无限状态系统弱互模拟的多项式时间可判定性及开放系统鲁棒满足性研究
1. 弱互模拟相关研究
在系统验证领域,弱互模拟是一个重要的概念。对于BPA(基本进程代数)和有限状态进程之间的弱互模拟,其可在 $O(n^5 m^7)$ 时间内判定。不过,弱互模拟关于顺序组合不是同余关系,这是一个不太理想的情况。为解决此问题,提出了终止敏感互模拟,它是弱互模拟的一种自然细化。这种关系能区分顺序执行中的三种基本现象:
- 正在执行的进程成功终止,系统可继续执行队列中的下一个进程。
- 执行的进程终止失败(死锁),这会导致整个系统“卡住”。
- 进入无限内部循环(活锁)。
终止敏感互模拟关于顺序组合是同余关系,并且在BPA和有限状态进程之间也可在多项式时间内判定。
对于有界BPP(基本并行进程)和有限状态进程之间的弱互模拟,同样可在多项式时间内判定。证明的基本结构与BPA的情况类似,关键在于将弱互模拟问题分解为关于单个常量及其相互作用的问题。有界BPP进程关于弱互模拟是有限的,当且仅当每个可达的进程常量关于弱互模拟都是有限的,但这一性质不适用于一般的BPP。
在处理有界BPP时,还需解决一些额外问题。由于有界性假设,互模拟基及其闭包相对简单,但BPP状态空间的“符号”表示更具挑战性。从给定的BPP状态通过一次 “$a⇒$” 移动可达的状态集不再是正则的,但可以用上下文无关文法(CF - 文法)在某种意义上表示。在算法中,利用了CF语言的空性可在多项式时间内判定,以及CF语言与正则语言的交集封闭这两个事实。
下面是一些相关的定义和定理:
- 定义 :设 $E$ 是一个BPP进程,$F$