鲁棒满足性:分支时态逻辑的模型检查研究
1. 引言
在系统验证领域,鲁棒模型检查是一个重要的研究方向。我们发现存在性公式对环境的非确定性不敏感,对于这类公式,可以使用模块检查方法。同时,我们研究了判断给定公式是全称还是混合的问题,发现它们都是 EXPTIME 完全的。这些结果在模块化验证和逆向推理等方面也具有重要意义。
2. 预备知识
2.1 树和自动机
- 树的定义 :给定有限集 Υ,Υ - 树是集合 T ⊆ Υ ∗,满足若 x · υ ∈ T(x ∈ Υ ∗,υ ∈ Υ),则 x ∈ T。树的元素称为节点,空字 ϵ 是根。对于 x ∈ T,x · υ ∈ T(υ ∈ Υ)是 x 的子节点。路径 η 是 T 的子集,满足 ϵ ∈ η 且对于每个 x ∈ η 存在唯一 υ ∈ Υ 使得 x · υ ∈ η。i 级是长度为 i 的节点集合。
- 标记树 :给定两个有限集 Υ 和 Σ,Σ - 标记的 Υ - 树是 ⟨T, V⟩,其中 T 是 Υ - 树,V : T → Σ 将 T 的每个节点映射到 Σ 中的字母。
- 交替树自动机 :交替树自动机 A = ⟨Σ, Q, q0, δ, α⟩ 在全 Σ - 标记的 Υ - 树上运行。它由有限状态集 Q、初始状态 q0、转移函数 δ 和接受条件 α 组成。转移函数 δ : Q × Σ → B+(Υ × Q) 将状态和输入字母映射到一个公式,该公式建议自动机的新配置。
下面是交替树自动机运行的一个简单示例流程: