开放系统验证与状态图的过程代数语义研究
在开放系统的验证以及状态图语义的精确界定方面,研究人员取得了诸多重要成果。下面将详细介绍相关的理论和方法。
开放系统验证相关理论
在开放系统验证中,有几个关键的理论和概念值得关注。
模块与公式的关系定理
给定一个模块 $M$ 和一个分支时态逻辑公式 $\psi$,若存在一个度为 $k$ 的无限模块 $M’$ 使得 $M \parallel M’$ 满足 $\psi$,那么也存在一个度为 $k$ 的有限模块 $M’‘$ 使得 $M \parallel M’‘$ 满足 $\psi$。这一定理为后续的模型检查提供了重要的理论基础。
通用和混合公式
- 通用公式 :一个公式 $\psi$ 是通用的,当且仅当对于每个模块 $M$,如果 $M$ 满足 $\psi$,那么对于每个 $M’$,组合 $M \parallel M’$ 也满足 $\psi$。也就是说,$M$ 满足通用属性 $\psi$ 等价于 $M$ 鲁棒地满足 $\psi$。
- 混合公式 :一个 CTL 公式 $\psi$ 是混合的,当且仅当 $\psi$ 以非平凡的方式同时施加通用和存在属性。即 $\psi$ 是混合的当且仅当 $\psi$ 和 $\neg\psi$ 都不是通用的。
对于非混合公式,有如下定理:考虑一个模块 $M$ 和一个规范 $\psi$。如果 $\psi$ 不是混合的,那么 $M$ 鲁棒地满足 $\psi$ 当且仅当对于每个确定性的 $M’$,$M \parall