并发项重写模型中的一致性属性探究
1. 实现部分
在实现转换关系时,可利用将 $E$ 分解为 $AC$ 和 $ER$ 的方法。在应用 $R$ 中的规则之前,需将当前项转换为模 $AC$ 的 $ER$ 范式。
实现转换关系 $T_i$ 定义如下:
$T_i = \bigcup_{n\in N} T_{i_n}$,其中 $T_{i_n} \subseteq T_{\Sigma}(X)^2$ 对于每个 $n \in N$ 归纳给出:
- $T_{i_0} = \varnothing$
- $T_{i_{n + 1}} = {(s, t) | s 是 ER/AC - 不可约的,存在 \frac{C}{l \to r} \in R, \sigma \in Sub 使得 s \xleftarrow{AC} \to^* l\sigma, r\sigma \xrightarrow{ER/AC} |t, 并且对于每个 c \to c’ \in C 有 c\sigma \xrightarrow{ER/AC} | T_{i_n} \xrightarrow{} | \xleftarrow{ER/AC} c’\sigma}$
需要注意的是,$T_i$ 仅关联 $ER/AC$ 范式。
若 $R$ 中的每个规则 $\frac{c_1 \to c’_1, …, c_k \to c’_k}{l \to r}$ 满足以下要求,则实现转换关系是可判定的:
1. 对于每个 $i \in {1, …, k}$,$c_i$ 是 $l$ 的真子项,即存在 $p \in Pos(l) \setminus {\epsilon}$ 使得 $l|_p = c_i$。