并发系统等价性与协议证明的研究
1. CSP 等价性相关内容
1.1 CSP 等价性的定义与特点
CSP 等价性与上一节提到的 Ndtr - Mindiv - Ndinftr 等价性有显著相似之处,但为避免混淆,我们使用 CSP 等价性这一称呼。最初定义 CSP 等价性的一个重要目标是直接推导递归进程方程的含义,而无需先将进程转换为 LTS,从而避免了对操作语义的需求。不过,这种定义导致 CSP 等价性不会保留进程执行发散轨迹后的行为信息。在这部分内容中,我们假设所有 LTS 都是有限分支的,因为否则 CSP 等价性将不是同余关系。
1.2 CSP 等价性的具体定义
我们引入稳定失败的概念,它对于保留死锁信息且关于“||”是同余的等价性很重要。对于有限分支的 LTS (L = (S, Σ, ∆, \hat{s})),有以下定义:
- 稳定失败集合 (sfail(L)):
[sfail(L) = {(\sigma, A) \in Σ^ ×2^Σ | \exists s \in S : \hat{s}\stackrel{\sigma}{\Rightarrow}s \land \forall a \in A\cup{\tau} : \neg(s\stackrel{a}{\rightarrow})}]
- 发散轨迹集合 (CSPdivtr(L)):
[CSPdivtr(L) = {\sigma \in Σ^ | \exists \rho : \rho \leq \sigma \land \rho \in Divtr(L)}]
- 失败集合 (CSPfail(L)):
[CSPfa