使用双向模拟进行协议证明检查
在反应式系统的研究中,我们常常需要对系统的行为和性质进行严格的验证和分析。双向模拟(bisimulation)是一种强大的工具,可用于证明两个系统在观察上是等价的。接下来我们将深入探讨过渡系统、观察等价性的概念,并通过几个具体的案例来展示如何使用双向模拟进行协议的证明检查。
过渡系统与观察等价性
反应式系统通常由一组有限的进程组件组成,这些组件根据自身状态通过连接发送和接收数据。为了描述这样的系统,我们引入了一些基本概念和符号。
- 信号与连接 :设 $\Lambda$ 是一个可数无限的信号集,用 $a, b, \cdots$ 表示可见动作。为了传输某种类型 $\alpha$ 的消息,我们引入了可数无限的连接集 $(\alpha)Con$,用 $c_1, c_2, \cdots$ 表示。可见标签集 $(\alpha)L$ 包括信号和消息沿连接的所有输入和输出。
- 系统状态与进程 :系统的状态通过其组件 $P_i$ 以及它们之间的并行组合归纳定义。进程既可以指组件,也可以指系统。进程组件和状态的语法如下:
- $(\alpha)PC ::= P_1(\tilde{x}_1) | \cdots | P_n(\tilde{x}_n)$
- $(\alpha)S ::= (\alpha)PC | (\alpha)S \parallel (\alpha)S$
其中 $\tilde{x}_i$ 是类型为 $\alpha$ 的变量。在 Isabelle 形式化中,组件是顺序但可能非确定性的进程,每个状态由一个