事件结构作为预层 —— 两个表示定理
1. 态射与范畴定义
从偏序集(pomsets)到事件结构的态射是将向下封闭集映射到向下封闭集的单射函数。从偏序集 $P$ 到偏序集 $Q$ 的态射不仅可以通过额外事件扩展 $P$,还可以放宽因果依赖关系。不过,严格态射会强制 $P$ 成为 $Q$ 的偏序集前缀。
我们定义了两个范畴:
- $Pom$ 范畴 :它是事件结构 $E$ 的一个满子范畴,其对象为有限偏序集。
- $Poms$ 范畴 :它是 $Pom$ 的子范畴,其中所有态射都是严格态射。
在 $Pom$ 中,满态射被称为增广(augmentation)。所有 $Pom$ 中的同构都是增广(且为严格态射),限制为增广态射也能得到 $Pom$ 的一个子范畴。
任何在 $Pom$ 中的态射 $f : P \to Q$ 都可以唯一地(在同构意义下)分解为 $f = P \stackrel{a}{\to} Q_0 \stackrel{j}{\to} Q$,其中 $a$ 是增广,$j$ 是严格态射。这种增广 - 严格分解在第二个表示定理的证明中起着核心作用。
2. 预层模型
预层是理解非确定性过程的一种工具。对于一个(本质上小的)范畴 $P$,其上的预层可以看作是一个非确定性过程,其计算路径的形状由 $P$ 的对象决定,而 $P$ 中的态射则表达了一种路径形状如何扩展为另一种路径形状。在本文中,$P$ 可以是 $Pom$ 或 $Poms$。
预层范畴 $\mathbf{\hat{P}}$ 的对象是从 $P^{op}$