72、分布式高阶 π - 演算中的子类型与局部性

分布式高阶 π - 演算中的子类型与局部性

1. 分布式高阶 π - 演算基础

在分布式高阶 π - 演算中,有特定的语法和归约规则。
- 语法
- 系统 :$M,N,… ::= P | N ∥M | (νa:σ)N$
- :$P,Q,… ::= Spawn(P) | ···$
- :与图 1 中定义相同
- 分布式归约规则
- (spawn) :$(···Q|Spawn(P)) −→(···Q)∥P$
- (coms) :$(u?(˜x: ˜τ).P| ···)∥(u!⟨˜V⟩Q| ···) −→(P{ ˜V/˜x}| ···)∥(Q| ···)$
- (pars) :$M −→M′$,则$M ∥N −→M′ ∥N$
- (ress) :$N −→N′$,则$(νa:σ)N −→(νa:σ)N′$
- (strs) :$N ≡N′ −→M′ ≡M$,$N −→M$

这里有一个简单的类型系统,满足标准的主题归约定理:
定理 2.3(主题归约) :如果$Γ ⊢P : ρ$且$P −→→P′$,那么$Γ ⊢P′ : ρ$。

2. 通道局部性
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值