分布式高阶 π - 演算中的子类型与局部性
1. 分布式高阶 π - 演算基础
在分布式高阶 π - 演算中,有特定的语法和归约规则。
- 语法 :
- 系统 :$M,N,… ::= P | N ∥M | (νa:σ)N$
- 项 :$P,Q,… ::= Spawn(P) | ···$
- 值 :与图 1 中定义相同
- 分布式归约规则 :
- (spawn) :$(···Q|Spawn(P)) −→(···Q)∥P$
- (coms) :$(u?(˜x: ˜τ).P| ···)∥(u!⟨˜V⟩Q| ···) −→(P{ ˜V/˜x}| ···)∥(Q| ···)$
- (pars) :$M −→M′$,则$M ∥N −→M′ ∥N$
- (ress) :$N −→N′$,则$(νa:σ)N −→(νa:σ)N′$
- (strs) :$N ≡N′ −→M′ ≡M$,$N −→M$
这里有一个简单的类型系统,满足标准的主题归约定理:
定理 2.3(主题归约) :如果$Γ ⊢P : ρ$且$P −→→P′$,那么$Γ ⊢P′ : ρ$。