自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(21)
  • 收藏
  • 关注

原创 【运输&公路】交通灯检测系统源码&数据集全套:改进yolo11-SCConv

本项目数据集信息介绍本项目所使用的数据集名为“Thesis”,旨在为改进YOLOv11的交通灯检测系统提供强有力的支持。该数据集专注于交通信号灯的不同类型,包含三种主要类别,分别为“1_left”、“1_right”和“2_arms”。这些类别的划分不仅反映了交通信号灯的多样性,也为模型的训练提供了丰富的样本,以便其能够在实际应用中准确识别和分类不同类型的交通信号灯。“Thesis”数据集的构建经过精心设计,确保了数据的多样性和代表性。

2024-11-04 12:00:03 1959

原创 【零售和消费品&存货】【无人零售】自动售卖机饮料检测系统源码&数据集全套:改进yolo11-KernelWarehouse

本项目数据集信息介绍本项目所使用的数据集名为“soda bottles”,专门用于训练和改进YOLOv11模型,以实现无人零售自动售卖机中的饮料检测系统。该数据集包含三种主要类别的饮料,分别是可口可乐(coca-cola)、芬达(fanta)和雪碧(sprite)。这些类别的选择不仅反映了市场上最受欢迎的饮料品牌,也为模型的训练提供了丰富的样本,确保其在实际应用中的准确性和可靠性。数据集的构建过程经过精心设计,确保每个类别的样本数量均衡且多样化,以便模型能够有效学习到不同饮料的特征。

2024-11-03 17:54:40 2179

原创 【天线&化学】航拍图屋顶异常检测系统源码&数据集全套:改进yolo11-ContextGuided

本项目数据集信息介绍本项目所使用的数据集名为“Roof inspection anomalies”,旨在为改进YOLOv11的航拍图屋顶异常检测系统提供高质量的训练数据。该数据集专注于屋顶检查过程中可能出现的异常情况,尤其是与设备相关的异常。数据集中包含了一个类别,即“equip”,该类别涵盖了与屋顶设备相关的各种异常现象。这些异常可能包括设备的损坏、老化、错位等问题,这些问题在航拍图像中可能表现为特定的视觉特征。

2024-11-02 15:21:28 1220

原创 【天线&运输】停车场车位空置状态检测系统源码&数据集全套:改进yolo11-DCNV3

本项目数据集信息介绍本项目所使用的数据集名为“parking lot”,旨在为改进YOLOv11的停车场车位空置状态检测系统提供必要的训练基础。该数据集专注于停车场车位的状态识别,涵盖了两种主要类别:空置(empty)和占用(occupied)。通过对这两种状态的有效区分,系统能够实时监测停车场的使用情况,从而为车主提供准确的停车信息,提升停车场的管理效率。“parking lot”数据集的构建过程充分考虑了实际应用场景的复杂性。

2024-11-02 11:38:56 1248

原创 【制造业&仓库】流水线能源设备检测系统源码&数据集全套:改进yolo11-DCNV2-Dynamic

本项目数据集信息介绍本项目所使用的数据集名为“MV_Train_Data”,旨在为改进YOLOv11的流水线能源设备检测系统提供支持。该数据集包含了两类主要的能源设备,分别是“EnergyPlus_Large”和“EnergyPlus_Reg”。在数据集的构建过程中,我们注重数据的多样性和代表性,以确保模型在实际应用中的鲁棒性和准确性。“EnergyPlus_Large”类别主要涵盖了大型能源设备的图像数据,这些设备通常具有复杂的结构和功能,涉及到多种能源的转换和利用。

2024-11-01 14:36:54 1051

原创 【制造业&工厂工人】工厂工人安全防护佩戴状态检测系统源码&数据集全套:改进yolo11-SCConv

本项目数据集信息介绍本项目所使用的数据集名为“icare”,旨在为改进YOLOv11的工厂工人安全防护佩戴状态检测系统提供支持。该数据集专注于工人安全防护装备的佩戴状态,包含两大类别:安全佩戴(safe)和不安全佩戴(notsafe)。通过对这两类状态的精确识别与分类,系统能够有效监测工人在工作环境中的安全行为,从而为提升工人安全防护意识和降低事故发生率提供数据支持。“icare”数据集的构建过程涉及多种工厂环境的实地拍摄,确保涵盖不同工种、不同工作场景及不同光照条件下的工人佩戴状态。

2024-10-31 13:31:00 836

原创 【天线&空中农业】航拍图草地杂草检测系统源码&数据集全套:改进yolo11-LVMB

本项目数据集信息介绍本项目所使用的数据集名为“grass weeds”,旨在为改进YOLOv11的航拍图草地杂草检测系统提供高质量的训练数据。该数据集专注于草地中杂草的识别与分类,特别是针对“0 ridderzuring”这一特定杂草种类。数据集的设计考虑到了航拍图像的特性,包含了多种不同环境下的草地图像,以确保模型在多样化场景中的泛化能力。“grass weeds”数据集包含丰富的图像样本,涵盖了不同光照条件、季节变化及生长状态下的“0 ridderzuring”杂草。

2024-10-31 09:22:35 1110

原创 【制造业&仓库】叉车与托盘检测系统源码&数据集全套:改进yolo11-iRMB

本项目数据集信息介绍本项目所使用的数据集名为“forklift-1”,旨在为改进YOLOv11的叉车与托盘检测系统提供高质量的训练数据。该数据集专注于叉车在工业环境中与托盘的交互,尤其是在仓储和物流场景下的应用。数据集的类别数量为1,具体类别为“pallet”,即托盘。这一类别的选择反映了项目的核心目标,即提升叉车在处理托盘时的检测精度和效率。“forklift-1”数据集包含了丰富的图像样本,涵盖了不同角度、光照条件和背景环境下的托盘图像。

2024-10-30 13:49:13 1316

原创 跌倒检测系统源码&数据集全套:改进yolo11-cls

本项目数据集信息介绍本项目所使用的数据集名为“Fall Detection”,专门用于训练和改进YOLOv11的跌倒检测系统。该数据集旨在提供高质量的样本,以支持机器学习模型在跌倒检测任务中的准确性和鲁棒性。数据集中包含的类别数量为1,具体类别为“Fall-Detected”,即跌倒检测。此单一类别的设置使得模型能够专注于识别跌倒事件,从而提高检测的精度和效率。在数据集的构建过程中,研究团队收集了多种场景下的跌倒视频和图像,确保数据的多样性和代表性。

2024-10-28 17:01:37 1811

原创 【运输&加载码头】各种门开闭状态检测系统源码&数据集全套:改进yolo11-DCNV2-Dynamic

本项目数据集信息介绍本项目所使用的数据集名为“doors”,旨在为改进YOLOv11的各种门开闭状态检测系统提供支持。该数据集专注于门的两种主要状态:关闭(close)和打开(open),通过精确标注和丰富的样本数据,确保模型在实际应用中的准确性和鲁棒性。数据集中包含的类别数量为2,分别对应于门的关闭状态和打开状态,这种简洁的分类设计使得模型能够快速学习并有效区分这两种状态。“doors”数据集的构建过程经过精心设计,涵盖了多种环境和场景下的门状态,确保了数据的多样性和代表性。

2024-10-27 16:05:18 1080

原创 【后勤&运输集装箱】集装箱字符识别系统源码&数据集全套:改进yolo11-ASF-DySample

本项目数据集信息介绍本项目所使用的数据集名为“container characters annotation”,旨在为改进YOLOv11的集装箱字符识别系统提供高质量的训练数据。该数据集包含35个类别,涵盖了数字和字母的所有基本字符,具体类别包括从0到9的数字以及从a到z的小写字母。这种丰富的字符组合为模型的训练提供了多样性,确保其在实际应用中能够准确识别和分类各种集装箱上的字符信息。数据集的构建过程注重多样性和代表性,确保每个字符在不同的环境、角度和光照条件下都有充分的样本。

2024-10-27 12:26:55 879

原创 【零售和消费品&家居用品】智慧质检儿童安全座椅表面缺陷检测系统源码&数据集全套:改进yolo11-ASF-P2

本项目数据集信息介绍本项目所使用的数据集名为“ccc”,专门用于训练改进YOLOv11的智慧质检儿童安全座椅表面缺陷检测系统。该数据集包含四个主要类别,分别为“Gap”(缝隙)、“Stain”(污渍)、“Wavy”(波浪状)和“Wrinkle”(皱纹),这些类别涵盖了儿童安全座椅表面可能出现的主要缺陷类型。通过对这些缺陷的精准识别,系统能够有效提高儿童安全座椅的质量检测效率,从而确保产品在市场上的安全性和可靠性。在数据集的构建过程中,研究团队对每个类别进行了细致的标注和分类,确保数据的准确性和代表性。

2024-10-25 14:15:44 1155

原创 【天线&水】水上浮标检测系统源码&数据集全套:改进yolo11-ELA-HSFPN

本项目数据集信息介绍本项目所使用的数据集名为“buoys”,专门用于训练和改进YOLOv11的水上浮标检测系统。该数据集包含两类浮标,分别为绿色浮标(green_buoy)和红色浮标(red_buoy),其类别数量为2。这一分类设计旨在帮助模型更准确地识别和区分不同颜色的浮标,从而提高在水域环境中检测的准确性和效率。“buoys”数据集的构建过程中,收集了大量在各种水域条件下拍摄的浮标图像,确保数据的多样性和代表性。

2024-10-24 12:54:52 1015

原创 【零售和消费品&厨房】室内场景图像分割系统源码&数据集全套:改进yolo11-ASF

本项目数据集信息介绍本项目所使用的数据集名为“all_finalize”,其主要目的是为改进YOLOv11的室内场景图像分割系统提供高质量的训练数据。该数据集包含27个类别,涵盖了各种常见的室内物品和设施,旨在增强模型对室内环境的理解和识别能力。

2024-10-23 10:43:39 598

原创 【天线&水】酸污染检测系统源码&数据集全套:改进yolo11-ODConv

本项目数据集信息介绍本项目所使用的数据集名为“Acid Pollution”,旨在为改进YOLOv11的酸污染检测系统提供必要的训练数据。该数据集专注于酸污染的检测,涵盖了相关的图像和标注信息,以支持深度学习模型的训练和优化。数据集中包含的类别数量为1,具体类别为“Acid Pollution”,这意味着该数据集专注于识别和检测与酸污染相关的图像特征。

2024-10-22 13:07:54 740

原创 基于改进mobilenetv3骨干网络YOLOv5的室内场景分割系统

基于改进mobilenetv3骨干网络YOLOv5的室内场景分割系统

2023-11-19 11:01:49 509

原创 基于Axial attention&FCN-UNet的医学分割系统

基于Axial attention&FCN-UNet的医学分割系统

2023-10-27 10:48:09 381 1

原创 基于改进卷积神经网络的足球和运动员追踪系统(部署教程和源码)

基于改进卷积神经网络的足球和运动员追踪系统(部署教程和源码)

2023-08-22 12:53:31 486 1

原创 基于改进YOLO的玉米病害识别系统(部署教程&源码)

基于改进YOLO的玉米病害识别系统(部署教程&源码)

2023-08-18 17:33:20 2320 1

原创 OpenCV多摄像头融合目标检测系统(部署教程&源码)

OpenCV多摄像头融合目标检测系统(部署教程&源码)

2023-08-17 14:04:34 1525 2

原创 基于DeepSort和OpenCV的猕猴桃巡检计数(源码&部署教程)

基于DeepSort和OpenCV的猕猴桃巡检计数(源码&部署教程)

2023-08-16 18:01:02 585 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除