玩转位运算

题目1,考察一个二进制表示的数,奇数位上的数字全部为1时,返回1。否则返回0。比如allOddBits(0xFFFFFFFD) = 0, allOddBits(0xAAAAAAAA) = 1。

思路,先构造一个奇数位上都为1的数,即0xAAAAAAAA。 任何数,与这个数位与(&)后,奇数位为1的位置仍为1,为0的位置将为0;偶数位上的数将转化为0。再跟这个数异或,则满足要求的数将转化为0,不满足要求的数为非0。取反即可。

int allOddBits(int x) {
  int a = 0xAA | 0xAA << 8;
  int b = a | a << 16; // b = 0xAAAAAAAA
  return !((x&b)^b);
}

题目2,求一个数的相反数,x --> -x

思路,这个题是常识题,~x是x的反码。

int negate(int x) {
  return ~x + 1;
}

题目3,使用位运算求绝对值。

思路,对于正数,不用位运算,返回x即可。对于负数,根据题目2,myAbs(x) = ~x + 1。对一个数求补码,还可以用异或^来表示,即~x = x^-1 , 由于x是负数,那么~x = x ^(x>>31) 。推到如下,sign = flag >> 31, flag表示符号位。基本的思路是找出相同的位运算操作,使用的参数为0,1或-1,然后通过输出参数x,来构造这些数。

​	   x      =    x^0    =     x^0 - 0   =   x^sign - sign  x >= 0

abs(x) =~x + 1 = x^-1 + 1  =   x^-1 - (-1) =   x^sign - sign	 x < 0
int myAbs(int x)  
{  
    int i = x >> 31;  
    return ((x ^ i) - i);  
} 

题目4,条件判断。如果x != 0, result = y;如果x = 0, result = z。

思路, 该题最重要的是,通过x构造出一个打开y 或者打开z的开关。所以基本的结构就是

		(-1 & y) |  (0 & z)	  =  (~!x & y)  |  (!x & z)    x != 0
result = 			
		(0 & y)  |  (-1 & z)  =   (x & y)   |  (~x &z)      x = 0  

好像很难归结于同一个式子。这里就需要利用一些性质闪转腾挪了,如x = 0时,x = !!x。以及 x = 0时,x与它的相反数相等,即x = ~x + 1。

int conditional(int x, int y, int z) {
  x = !!x; 
  x = ~x + 1; 
  return (x & y) | (~x & z);
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值