pytorch 安装缓慢 或者报错问题 pandas 安装

博客作者分享了在安装PyTorch时遇到的问题及解决方法,包括conda换源、手动从清华源下载特定版本的PyTorch和torchvision。提供了详细步骤,如进入下载文件夹进行安装,并验证安装成功。此外,还提及了Pandas的安装,如果pip安装失败,给出了备用方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

弄了一上午,也看了网上许多教程,总结。

conda 换源

参考 这里

这里也是

自己去下 pytorch 和 torchvision

参考 这篇良心

去清华源下
https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/win-64/

我提供下自己的版本
pytorch 1.5 torchvision 0.6.0 python 3.6 CPU版 :

torchvision-0.6.0-py36_cpu.tar
pytorch-1.5.0-py3.6_cpu_0.tar

下载完了之后我们打开anaconda prompt,输入命令进入下载好的压缩文件所在目录。比如,我下载在E盘里面,使用如下命令:

E:
cd E:\chrome下载内容
conda install --offline torchvision-0.6.0-py36_cpu.tar
### PyTorch CPU 安装教程及常见报错解决方法 #### 创建并激活虚拟环境 为了确保安装过程顺利以及不干扰其他项目,在 Anaconda 中创建一个新的 Python 虚拟环境是非常重要的。执行如下命令来完成这一步骤: ```bash conda create --name PyTorch_cpu python=3.9 conda activate PyTorch_cpu ``` #### 安装 PyTorch 和 torchvision 库 一旦进入了名为 `PyTorch_cpu` 的新环境之后,就可以继续安装所需的库文件了。对于仅需支持 CPU 运算的情况来说,建议采用官方推荐的方式来进行安装操作。 ```bash conda install pytorch torchvision torchaudio cpuonly -c pytorch ``` 这条指令会自动下载适合当前系统的稳定版 PyTorch 及其配套组件,并将其配置为只利用中央处理器(CPU)资源工作[^1]。 #### 验证安装成功与否 当上述步骤完成后,可以通过简单的测试脚本来验证是否正确设置了 PyTorch 环境。打开 Python 解释器或编写一个小程序来尝试导入 PyTorch 并打印版本号: ```python import torch print(torch.__version__) ``` 如果一切正常,则应该能够看到所安装的具体版本信息而没有任何异常提示。 #### 常见错误及其处理方式 ##### 错误一:无法找到合适的包组合 有时可能会遇到 Conda 报告找不到满足条件的软件包集合的问题。此时可考虑更新 Conda 自身至最新状态后再试一次;另外也可以切换到 pip 工具进行安装作为备选方案之一。 ##### 错误二:CUDA 相关模块加载失败 尽管选择了 CPU-only 版本,但在某些情况下仍可能出现关于 CUDA 初始化失败的信息。这类警告通常不影响实际功能,但如果确实造成了困扰,确认所有依赖项均已完全卸载旧有 GPU 支持部分再重做一遍前述流程即可消除此类消息显示[^3]。 ##### 错误三:特定硬件架构下的兼容性问题 针对不同平台特性优化过的预编译二进制文件可能并不适用于所有的计算机型号。假如发现存在性能瓶颈或是根本就跑不通的情形下,不妨查阅目标机器具体的微体系结构名称(比如 AMD64/x86_64),进而寻找更贴合实际情况的自定义构建选项或者源码编译路径[^4]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值