软件开发性能优化与并行编程最佳实践
1. 性能概述
性能在软件开发中至关重要。它有多种含义,有时指程序运行快到用户察觉不到延迟,界面不卡顿;有时指程序能快速完成执行,或者服务器能处理大量客户端请求。
要解决性能问题,首先要明确性能问题的根源,而算法往往是首要怀疑对象。不同算法在处理数据时表现不同,常见的算法复杂度分类如下:
| 算法类型 | 复杂度表示 | 示例 | 说明 |
| ---- | ---- | ---- | ---- |
| 常数时间算法 | O(1) | 访问数组元素 | 数据大小不影响处理时间 |
| 线性算法 | O(n) | 在无序列表中搜索 | 处理时间与输入数据大小成正比 |
| 指数算法 | 复杂度高 | 如某些低效排序算法 | 数据量增大时速度极慢,对大输入几乎无用 |
算法复杂度用大O表示法描述,例如冒泡排序的时间复杂度是O(n²),若输入规模扩大1000倍,执行时间将慢100万倍。而二分查找复杂度为O(log n),优秀排序算法复杂度为O(n log n),这两种算法比O(n)和O(n²)快很多。
选择合适的数据结构对性能也很关键。Delphi标准数据结构在添加、删除和查找元素时表现不同。字典能在O(1)时间内完成所有操作,但会牺牲插入顺序并占用更多内存。
2. 代码性能测量
即使了解程序所用算法的快慢,也不能凭猜测确定程序的性能瓶颈,而应测量执行速度。测量方法如下:
- 使用TStopwatch :当你认为知道问题所在,想确认怀疑并验证改进后方案是否更快时,Delphi的TStopwa