Leetcode 深度优先搜索 (2)

94. 二叉树的中序遍历

给定一个二叉树的根节点 root ,返回 它的 中序 遍历 。

示例 1:

在这里插入图片描述
输入: root = [1,null,2,3]
输出: [1,3,2]

问题分析
中序遍历是二叉树遍历的基本方式之一,遍历顺序为:左子树 → 根节点 → 右子树

核心特点

  • 递归性质:对每个节点都按照相同的规则处理
  • 有序性:对于二叉搜索树,中序遍历结果是有序序列
  • 深度优先:需要深入到最左侧节点才开始访问

思路一:递归方法(最直观)

基本思想:

  • 利用递归的天然特性,直接按照中序遍历的定义实现
  • 每次递归处理:左子树 → 当前节点 → 右子树

算法步骤:

  • 如果当前节点为空,直接返回
  • 归遍历左子树
  • 问当前节点(添加到结果中)
  • 递归遍历右子树

时间复杂度: O(n)O(n)O(n) 每个节点访问一次 空间复杂度:O(h)O(h)O(h) 递归栈深度,h为树高

思路二:迭代方法(使用栈)

基本思想:

  • 用栈模拟递归过程
  • 先将所有左子树节点入栈,然后逐个弹出处理

算法步骤:

  • 从根节点开始,将所有左子树节点压入栈中
  • 栈不为空时:
  • 弹出栈顶节点,访问该节点
  • 如果该节点有右子树,将右子树作为新的起点,重复步骤1
  • 核心理解:栈中存储的是"待访问的节点",这些节点的左子树已经处理完毕

思路三:Morris遍历(空间优化)

基本思想:

  • 利用叶子节点的空指针建立临时连接
  • 实现O(1)空间复杂度的遍历

算法核心:

  • 对于每个节点,找到其前驱节点(左子树的最右节点)
  • 建立前驱节点到当前节点的临时连接
  • 遍历完成后恢复树的原始结构

代码实现

递归方法(最直观)

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {

    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> result = new ArrayList<>();
        inorderHelper(root, result);
        return result;
    }
    
    /**
     * 中序遍历递归辅助方法
     * @param node 当前节点
     * @param result 结果列表
     */
    private void inorderHelper(TreeNode node, List<Integer> result) {
        // 递归终止条件:节点为空
        if (node == null) {
            return;
        }
        

        inorderHelper(node.left, result);
        
        result.add(node.val);
        
        inorderHelper(node.right, result);
    }
    
}

迭代方法(使用栈)

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {

public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> result = new ArrayList<>();
        Stack<TreeNode> stack = new Stack<>();
        TreeNode current = root;
        
        // 迭代过程:
        // 1. 先将所有左子树节点压栈
        // 2. 弹出节点并访问
        // 3. 转向右子树继续处理
        while (current != null || !stack.isEmpty()) {
            // 将当前节点及其所有左子树节点压栈
            while (current != null) {
                stack.push(current);
                current = current.left;
            }
            
            // 弹出栈顶节点(此时左子树已处理完)
            current = stack.pop();
            
            // 访问当前节点
            result.add(current.val);
            
            // 转向右子树
            current = current.right;
        }
        
        return result;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值