自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(39)
  • 收藏
  • 关注

原创 Leetcode 深度优先搜索 (7)

给定一个二叉树 root ,返回其最大深度。二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。并行计算二叉树最大深度可以利用多线程分别计算左右子树的最大深度,然后在主线程中合并结果。

2025-08-19 20:05:38 275

原创 Leetcode 深度优先搜索 (6)

轴对称的定义:一棵二叉树是轴对称的,当且仅当它的左子树和右子树是镜像对称的。也就是说,左子树的结构和节点值与右子树完全对称。也可以用队列或栈进行迭代实现,原理类似,都是成对比较左右子树的对应节点。给你一个二叉树的根节点 root , 检查它是否轴对称。

2025-08-19 17:52:27 254

原创 BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain

基于深度学习的技术在各种识别和分类任务中已取得了最先进的性能。本文指出,外包训练会引入新的安全风险:攻击者可以创建一个恶意训练的网络(即带有后门的神经网络,称为 BadNet),该网络在用户的训练和验证样本上表现优异,但在攻击者选择的特定输入上却会表现异常。接着,我们在更现实的场景中展示了后门的应用:构建了一个美国街道标志分类器,当在停车标志上贴上特定的贴纸时,它会将其识别为限速标志。我们进一步展示,即使该网络后来被重新训练用于其他任务,这一后门仍然可能存在,并在触发后门时平均导致准确率下降 25%。

2025-08-18 16:56:17 539

原创 Leetcode 深度优先搜索 (5)

给你两棵二叉树的根节点 p 和 q ,编写一个函数来检验这两棵树是否相同。如果两个树在结构上相同,并且节点具有相同的值,则认为它们是相同的。当前节点相同 = 节点值相等 && 左子树相同 && 右子树相同。

2025-08-18 16:14:32 476

原创 Leetcode 深度优先搜索 (4)

给你二叉搜索树的根节点 root ,该树中的 恰好 两个节点的值被错误地交换。在一个二叉搜索树中,恰好有两个节点的值被错误交换了,需要找到这两个节点并将它们的值交换回来,恢复正确的BST。例如:[1, 3, 2, 4, 5] → 节点3和2被交换。例如:[1, 5, 3, 4, 2] → 节点5和2被交换。继续遍历:如果再次发现逆序,记录第二个错误节点(当前节点)如果只有一次逆序:第二个错误节点就是第一次逆序中的当前节点。第二个错误节点:第二个逆序对中较小的数(2)第一个错误节点:逆序对中较大的数(3)

2025-08-18 15:08:46 346

原创 深度学习论文解析

摘要—人工智能(AI)在很大程度上依赖于深度学习,这项技术在现实生活中的AI应用中日益普及,甚至被用于安全关键和高风险领域。然而,近期研究发现,深度学习模型可能被植入“特洛伊木马”进行操控。为了规避深度学习的高计算需求,许多实际解决方案选择将模型训练或数据标注外包给第三方,但这也进一步增加了模型遭受特洛伊攻击的风险。鉴于该问题在深度学习领域的重要性,近年来相关文献中涌现出大量研究成果。本文对深度学习中的特洛伊攻击技术及其防御方法进行了全面综述。

2025-08-18 14:36:27 606

原创 Leetcode 深度优先搜索 (3)

给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。true。

2025-08-18 11:22:37 301

原创 Leetcode 深度优先搜索 (2)

中序遍历是二叉树遍历的基本方式之一,遍历顺序为:左子树 → 根节点 → 右子树。给定一个二叉树的根节点 root ,返回 它的 中序 遍历。递归栈深度,h为树高。

2025-08-17 09:30:25 384

原创 Leetcode 深度优先搜索 (1)

这种优化的价值在于它是一种预处理优化,通过简单的字符频率分析就能显著减少搜索空间,而不需要改变核心的搜索算法逻辑。在单词搜索问题中,我们需要遍历网格中的每个位置作为潜在的起点。传统方法是固定从单词的第一个字符开始搜索,但我们可以选择从单词的最后一个字符开始,反向搜索整个单词。单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格。总的来说,反向搜索优化是一种巧妙的策略,它利用了字符分布的不均匀性来减少无效的搜索尝试,在保持算法正确性的同时显著提升了性能。

2025-08-17 08:26:06 736

原创 Leetcode 最小生成树系列(4)

这是一个关于带权图中条件路径查询的问题,核心要求是:判断在给定权重限制下,两个节点是否连通。// 返回 true。存在一条从 2 到 3 ,距离为 1 的边,// 返回 true。存在一条从 2 到 0 的路径,使得每条边的。个节点的无向图以边的列表 edgeList 的形式定义,其中。注意,同一对节点间可能有多条边,且该图可能不是连通的。// 距离 < 3:从 2 到 3 到 0 行进即可。的路径,且路径中每条边的距离都严格小于。// 这条边的距离小于 2。// 严格小于 3 的路径。

2025-08-17 02:16:09 860

原创 USENIX Security ‘24 Fall Accepted Papers (1)

USENIX Security 论文分析

2025-08-15 17:05:00 337

原创 Leetcode 最小生成树系列(3)

注意到第 0 条边和第 1 条边出现在了所有最小生成树中,所以它们是关键边,我们将这两个下标作为输出的第一个列表。边 2,3,4 和 5 是所有 MST 的剩余边,所以它们是伪关键边。如果从图中删去某条边,会导致最小生成树的权值和增加,那么我们就说它是一条关键边。伪关键边则是可能会出现在某些最小生成树中但不会出现在所有最小生成树中的边。最小生成树 (MST) 是给定图中边的一个子集,它连接了所有节点且没有环,而且这些边的权值和最小。请注意,你可以分别以任意顺序返回关键边的下标和伪关键边的下标。

2025-08-15 15:42:27 671

原创 Leetcode 最小生成树系列(2)

最好的策略是在第一个房子里建造水井(成本为 1),然后将其他房子铺设管道连起来(成本为 2),所以总成本为 3。题目的核心技巧是引入虚拟节点,把“打井”也看作是建一条特殊的边:增加一个虚拟节点 0,表示“水源”。MST 会自动帮我们决定:哪些房子直接打井(连接到 0 节点的边被选中)。,我们有两种可选的供水方案:一种是直接在房子内建造水井,成本为。我们希望通过建造水井和铺设管道来为所有房子供水。给出了在房子间铺设管道的成本,其中每个。节点的图上,求一棵最小生成树(MST)。,代表直接在该房子打井。

2025-08-15 15:10:53 1022

原创 Leetcode 最小生成树系列(1)

从全局上看,这个题的核心就是——用最小的代价让所有节点(城市)互相连通。并查集判连通 每次加入一条边,只有当它连接了两个尚不在同一连通分量的城市时才真正采用。重复直到形成 n−1 条边 此时正好连接了全部 n 个城市且无环,成本最小。选出任意 2 条边都可以连接所有城市,我们从中选取成本最小的 2 条。,每对城市之间至少有一条路径。该 最小成本 应该是所用全部连接成本的总和。按边权从小到大排序 最便宜的连接优先考虑。想象一下你是个城市基建规划者,地图上有。即使连通所有的边,也无法连接所有城市。

2025-08-15 11:31:49 1116

原创 AI大模型--知识图谱

最近在研究大模型中的知识图谱,感觉里面的概念比较凌乱。于是抽空把相关概念以及关键技术做了总结。

2025-08-13 13:19:13 868

原创 LangChain框架及其应用场景介绍

LangChain 是一个用于构建基于大型语言模型(LLM)应用程序的框架,它提供了一套工具和接口,帮助开发者更高效地开发、组合和部署 LLM 驱动的应用。它的核心目标是简化 LLM 与其他工具、数据源和业务流程的集成,使开发者能够构建更灵活、功能更丰富的 AI 应用。数据集成(RAG)LangChain 可以连接外部数据源(如 PDF、网页、数据库),通过检索相关信息增强 LLM 的生成能力,减少幻觉问题。多步骤工作流。

2025-08-11 12:25:04 1267

原创 AI大模型--提示词工程

是指你希望模型完成的具体工作类型或行为。例如:写一篇文章、总结一段文本、生成一段代码、回答一个问题、分析一组数据等。

2025-08-10 16:05:34 642

原创 基于DDPG策略的Atari中的quadrapong_v4

quadrapong_v4 是 Atari 游戏中的一个多智能体版本的乒乓球游戏,灵感来自经典的 Pong,但扩展为 四人对战。每位玩家控制一个挡板,负责防守自己所在边界的得分区域。目标是将球击向对方的得分区域,从而为自己的团队赢得分数。

2025-08-10 13:40:25 245

原创 基于Actor-Critic策略的Atari中的pong_v3

Pong_v3 是基于经典 Atari 游戏《Pong》的多智能体强化学习环境。它模拟了两个玩家在屏幕两侧控制挡板,试图将球击回并得分的场景。这是一个经典的双人对抗游戏,强调反应速度与击球角度。每个智能体的目标是将球击回并让球越过对方的挡板,从而获得分数。

2025-08-10 10:50:48 247

原创 基于Policy Gradient策略的Atari中的boxing_v2

Boxing_v2 是基于 Atari 2600 游戏《Boxing》的多智能体强化学习环境,由 PettingZoo 提供。两个拳击手在一个封闭的擂台中进行为期两分钟的比赛(约 1200 步),目标是尽可能多地击中对方以获得分数。每个智能体的目标是通过移动和出拳击中对手,从而获得更高的分数。比赛结束时分数更高者获胜,或者通过击倒(KO)直接结束比赛。

2025-08-10 08:40:25 610

原创 基于深度强化学习的Atari中的SpaceInvaders

space_invaders_v2 是基于 Atari 经典街机游戏《Space Invaders》的多智能体版本。它将原始单人射击游戏扩展为双人模式,嵌入合作与竞争机制,适用于多智能体强化学习研究。

2025-08-09 11:40:50 793

原创 基于深度强化学习的Atari中的AirRaid-v5

AirRaid-v5 是 Gymnasium 中基于 Atari 游戏《Air Raid》的强化学习环境,属于经典的 2D 飞行射击类游戏。该环境通过 Arcade Learning Environment (ALE) 模拟器实现,适用于训练智能体进行目标识别、动作规划和反应控制。

2025-08-08 10:40:38 316

原创 基于深度强化学习的Atari中的LunarLander

LunarLander-v3 是 Gymnasium 框架中的一个经典强化学习环境,模拟了一个火箭在月球表面安全着陆的任务。它属于 Box2D 物理模拟环境,任务目标是控制一个着陆器在重力作用下平稳降落在指定的着陆垫上。

2025-08-08 09:52:53 242

原创 基于深度强化学习的俄罗斯方块模拟训练器

gym-tetris 是一个将经典游戏《俄罗斯方块》(Tetris)集成到 OpenAI Gym 强化学习框架中的环境。它允许研究人员和开发者使用强化学习算法训练智能体来玩 Tetris,主要基于 NES(任天堂娱乐系统)版本的游戏。

2025-08-07 17:04:13 126

原创 回溯策略技术总结

回溯是一种系统地搜索所有可能问题解的策略。在多阶段决策问题中,每到一个决策点,尝试所有可能的选择,如果发现某个分支无法达成目标,则“回溯”到上一个决策点,尝试其他选项。本质上是:深度优先搜索 + 剪枝优化。通过递归探索、状态记录和判断剪枝,实现高效解空间遍历。

2025-08-04 15:17:19 822

原创 剪枝策略技术总结

剪枝(Pruning)是一种在搜索或递归过程中提前终止无效或不优解分支的优化方法。它的目的是减少不必要的计算,提升算法效率,尤其在回溯法、深度优先搜索(DFS)以及动态规划等问题中非常重要。

2025-08-04 14:27:18 928

原创 分治策略技术总结

分治法是一种经典的算法设计思想,其核心理念是将一个复杂问题分成多个规模较小的子问题,递归地解决每个子问题,然后合并子问题的解得到原问题的解。它通常用于减少算法时间复杂度,提高程序效率。分解(Divide):将问题分解为多个子问题。解决(Conquer):递归地解决这些子问题。合并(Combine):将子问题的解合并为原问题的解。** 分治法的几种类型**

2025-08-04 11:31:29 545

原创 动态规划技术总结

什么是动态规划?动态规划(Dynamic Programming,简称 DP)是一种解决最优化问题的算法思想,特别适用于具有 重叠子问题 和 最优子结构 的问题。它的核心思想是将问题分解成子问题,通过保存子问题的结果(通常使用数组或表格)避免重复计算,从而提高效率。

2025-08-04 10:14:30 967

原创 树形结构技术总结

在数据结构中,树(Tree)是一种非常重要且广泛应用的非线性结构。它以一种层级的方式组织数据,非常适合表示具有父子关系的结构,如文件系统、组织架构、分类系统等。

2025-08-04 09:31:09 595

原创 图算法技术总结

给定一个带权无向图,最小生成树是一个包含所有顶点的子图。它是一个树结构(无环),包含。

2025-08-03 17:51:31 834

原创 DOS攻击中常用的工具

一个强大的TCP/IP包构建和发送工具,能够用于发送各种类型的TCP/IP数据包,并支持RAW-IP模式。

2025-07-31 16:56:51 723

原创 背包问题技术总结

总结背包问题

2025-07-31 15:29:04 318

原创 Kali常用命令汇总

一个用于网络发现和安全审计的开源网络扫描工具,通过发送特定的数据包来探测目标主机的端口连通性、服务类型、操作系统指纹及安全配置等,广泛应用于渗透测试、网络监控和漏洞评估场景-sS : 执行半开放连接扫描(SYN扫描),通过未完成的TCP三次握手探测开放端口-p : 指定扫描端口范围(单个端口如80,端口范围如80-100,或组合如22,80,443)-sV : 启用服务版本探测,识别目标端口提供的具体服务类型及版本信息-O : 进行操作系统指纹识别,基于回应数据包特征判断目标系统类型。

2025-07-31 14:48:54 706

原创 用Python实现文件上传功能

服务器端代码客户端代码2. 网页版的文件上传项目组织架构upload.htmlserver.py3. 最后上一张效果图

2025-07-31 09:50:34 248

原创 显卡直通技术

显卡直通(GPU Passthrough)是一种虚拟化技术,它允许将物理显卡直接分配给虚拟机使用,使虚拟机拥有接近原生的图形处理性能。这项技术广泛应用于云计算、高性能计算、AI 训练、图形渲染、虚拟桌面等场景。

2025-07-30 10:44:35 945

原创 Wireshark抓取HTTP协议的数据包

【代码】Wireshark抓取HTTP协议的数据包。

2025-07-29 07:25:02 408

原创 Wireshark 抓包与分析入门教程

Wireshark 是一款开源的网络抓包与协议分析工具,可对经过网卡的所有数据包进行实时捕获和深度解析。当前wireshark的官方网址为:https://www.wireshark.org/ 在官网首页可以根据当前的操作系统下载对应的安装包。Windows 用户:安装时勾选 “WinPcap” 或 “Npcap”;Linux/macOS 用户:可通过包管理器(如 apt install wireshark)或官方 dmg/PKG 安装。

2025-07-28 11:51:57 572

原创 网络安全三要素

评价系统安全的三要素:保密性、完整性和可用性

2025-07-28 10:48:27 567

原创 网络安全体系知识大纲

2025年7月28日,从今天起开始深入研究网络安全

2025-07-28 10:03:07 353

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除