凸集与凸函数

凸集

D⊂RnD\subset R^nDRn∀x,y∈D\forall x,y\in Dx,yD
λx+(1−λ)y∈D,∀ 0≤λ≤1 \lambda x+(1-\lambda)y\in D,\forall \ 0\leq \lambda\leq 1 λx+(1λ)yD, 0λ1
即连接任意DDD上两点的直线段上的所有点也在DDD内。

性质

两个凸集的交、和、差、线性组合也是凸集。

凸集的任意有限个点的图组合仍属于凸集。

定理

投影定理

y∉Dy\notin Dy/D,存在唯一的点x‾∈D\overline x\in DxD,使得yyyx‾\overline xx的连线是yyyDDD的最短距离,即
∣∣x‾−y∣∣=inf⁡x∈D∣∣x−y∣∣ ||\overline x-y||=\inf_{x\in D} ||x-y|| xy=xDinfxy
DDD内其他任意一点xxxyyy的向量与x‾\overline xxyyy的向量内积>0>0>0,即成锐角,
(x−x‾)T(x‾−y)≤0,∀x∈D (x-\overline x)^T(\overline x-y)\leq 0,\forall x\in D (xx)T(xy)0,xD

点与凸集分离定理

x∈D,y∉Dx\in D,y\notin DxD,y/D,存在非零向量a∈Rna\in R^naRn和实数β\betaβ
aTx≤β<aTy a^Tx\leq \beta<a^Ty aTxβ<aTy
将向量内积视为投影,约掉∣a∣|a|a,相当于比较x,yx,yx,yaaa上投影的长度。

在这里插入图片描述

Farkas\rm FarkasFarkas引理

Am×n,b∈RmA_{m\times n},b\in R^mAm×n,bRm,下列两组方程有且仅有一组有解:
∃x∈Rn, s.t.Ax=b, x≥0 \exist x\in \R^n, \ s.t. Ax=b, \ x\geq 0 xRn, s.t.Ax=b, x0

∃y∈Rm,s.t.ATy≥0,bTy<0 \exist y\in R^m,s.t. A^Ty\geq 0, b^Ty<0 yRm,s.t.ATy0,bTy<0

Ax=a1x1+a2x2+⋯+anxn(xi≥0)Ax=a_1x_1+a_2x_2+\cdots+a_nx_n(x_i\geq 0)Ax=a1x1+a2x2++anxn(xi0)的所有取值情况想象成由mmm维列向量a1,a2,⋯ ,ana_1,a_2,\cdots,a_na1,a2,,an张成的凸锥,上述两个方程描述的事实上是mmm维向量bbb在凸锥内或凸锥外的两种情况。

  • bbb在凸锥内部,则必然可以由a1,a2,⋯ ,ana_1,a_2,\cdots,a_na1,a2,,an线性表示,即存在一组x1,x2,⋯ ,xnx_1,x_2,\cdots,x_nx1,x2,,xn,使得b=Ax=a1x1+a2x2+⋯+anxn(xi≥0)b=Ax=a_1x_1+a_2x_2+\cdots+a_nx_n(x_i\geq 0)b=Ax=a1x1+a2x2++anxn(xi0).
  • bbb在凸锥外部,则必存在一个经过原点的超平面hhh分割了凸锥和bbb。取hhh引向凸锥一侧的法向量yyy,易得aiTy≥0a_i^Ty\geq 0aiTy0,则ATy≥0A^Ty\geq 0ATy0。由于bbbyyy异侧,所以bTy<0b^Ty<0bTy<0

在这里插入图片描述

支撑超平面定理

DDD为非空集合
Hx‾={x∈Rn∣aT(x‾−x)=0},x‾∈δD H_{\overline x}=\{x\in R^n|a^T(\overline x-x)=0\},\overline x\in \delta D Hx={xRnaT(xx)=0},xδD
这里的支撑超平面也就是DDD的切平面。

非空凸集在其边界点处存在支撑超平面。对非空凸集DDD,存在非零向量a∈Rna\in R^naRn
aTx≤aTx‾,∀x∈D‾(D的闭包) a^Tx\leq a^T\overline x,\forall x\in \overline D(D的闭包) aTxaTx,xD(D)
在这里插入图片描述

两个凸集的分离定理

D1,D2D_1,D_2D1,D2为非空凸集,D1∩D2=∅D_1\cap D_2=\emptyD1D2=,存在超平面分离两个非空凸集,即存在非零向量a∈Rna\in R^naRn,使得
aTx≤aTy,∀x∈D‾1,∀y∈D‾2 a^Tx\leq a^Ty,\forall x\in \overline{D}_1,\forall y\in \overline{D}_2 aTxaTy,xD1,yD2
D1−D2D_1-D_2D1D2视作新的凸集,利用无交证明不包含零向量,应用支撑超平面定理易证。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值