凸集
D⊂RnD\subset R^nD⊂Rn,∀x,y∈D\forall x,y\in D∀x,y∈D,
λx+(1−λ)y∈D,∀ 0≤λ≤1
\lambda x+(1-\lambda)y\in D,\forall \ 0\leq \lambda\leq 1
λx+(1−λ)y∈D,∀ 0≤λ≤1
即连接任意DDD上两点的直线段上的所有点也在DDD内。
性质
两个凸集的交、和、差、线性组合也是凸集。
凸集的任意有限个点的图组合仍属于凸集。
定理
投影定理
y∉Dy\notin Dy∈/D,存在唯一的点x‾∈D\overline x\in Dx∈D,使得yyy与x‾\overline xx的连线是yyy到DDD的最短距离,即
∣∣x‾−y∣∣=infx∈D∣∣x−y∣∣
||\overline x-y||=\inf_{x\in D} ||x-y||
∣∣x−y∣∣=x∈Dinf∣∣x−y∣∣
DDD内其他任意一点xxx到yyy的向量与x‾\overline xx到yyy的向量内积>0>0>0,即成锐角,
(x−x‾)T(x‾−y)≤0,∀x∈D
(x-\overline x)^T(\overline x-y)\leq 0,\forall x\in D
(x−x)T(x−y)≤0,∀x∈D
点与凸集分离定理
x∈D,y∉Dx\in D,y\notin Dx∈D,y∈/D,存在非零向量a∈Rna\in R^na∈Rn和实数β\betaβ,
aTx≤β<aTy
a^Tx\leq \beta<a^Ty
aTx≤β<aTy
将向量内积视为投影,约掉∣a∣|a|∣a∣,相当于比较x,yx,yx,y在aaa上投影的长度。
Farkas\rm FarkasFarkas引理
Am×n,b∈RmA_{m\times n},b\in R^mAm×n,b∈Rm,下列两组方程有且仅有一组有解:
∃x∈Rn, s.t.Ax=b, x≥0
\exist x\in \R^n, \ s.t. Ax=b, \ x\geq 0
∃x∈Rn, s.t.Ax=b, x≥0
∃y∈Rm,s.t.ATy≥0,bTy<0 \exist y\in R^m,s.t. A^Ty\geq 0, b^Ty<0 ∃y∈Rm,s.t.ATy≥0,bTy<0
将Ax=a1x1+a2x2+⋯+anxn(xi≥0)Ax=a_1x_1+a_2x_2+\cdots+a_nx_n(x_i\geq 0)Ax=a1x1+a2x2+⋯+anxn(xi≥0)的所有取值情况想象成由mmm维列向量a1,a2,⋯ ,ana_1,a_2,\cdots,a_na1,a2,⋯,an张成的凸锥,上述两个方程描述的事实上是mmm维向量bbb在凸锥内或凸锥外的两种情况。
- 若bbb在凸锥内部,则必然可以由a1,a2,⋯ ,ana_1,a_2,\cdots,a_na1,a2,⋯,an线性表示,即存在一组x1,x2,⋯ ,xnx_1,x_2,\cdots,x_nx1,x2,⋯,xn,使得b=Ax=a1x1+a2x2+⋯+anxn(xi≥0)b=Ax=a_1x_1+a_2x_2+\cdots+a_nx_n(x_i\geq 0)b=Ax=a1x1+a2x2+⋯+anxn(xi≥0).
- 若bbb在凸锥外部,则必存在一个经过原点的超平面hhh分割了凸锥和bbb。取hhh引向凸锥一侧的法向量yyy,易得aiTy≥0a_i^Ty\geq 0aiTy≥0,则ATy≥0A^Ty\geq 0ATy≥0。由于bbb与yyy异侧,所以bTy<0b^Ty<0bTy<0。
支撑超平面定理
DDD为非空集合,
Hx‾={x∈Rn∣aT(x‾−x)=0},x‾∈δD
H_{\overline x}=\{x\in R^n|a^T(\overline x-x)=0\},\overline x\in \delta D
Hx={x∈Rn∣aT(x−x)=0},x∈δD
这里的支撑超平面也就是DDD的切平面。
非空凸集在其边界点处存在支撑超平面。对非空凸集DDD,存在非零向量a∈Rna\in R^na∈Rn,
aTx≤aTx‾,∀x∈D‾(D的闭包)
a^Tx\leq a^T\overline x,\forall x\in \overline D(D的闭包)
aTx≤aTx,∀x∈D(D的闭包)
两个凸集的分离定理
D1,D2D_1,D_2D1,D2为非空凸集,D1∩D2=∅D_1\cap D_2=\emptyD1∩D2=∅,存在超平面分离两个非空凸集,即存在非零向量a∈Rna\in R^na∈Rn,使得
aTx≤aTy,∀x∈D‾1,∀y∈D‾2
a^Tx\leq a^Ty,\forall x\in \overline{D}_1,\forall y\in \overline{D}_2
aTx≤aTy,∀x∈D1,∀y∈D2
将D1−D2D_1-D_2D1−D2视作新的凸集,利用无交证明不包含零向量,应用支撑超平面定理易证。