机器学习100天,今天讲的是:最通俗地理解梯度下降算法!
一、下山问题
梯度下降算法的解释非常简单:局部下降最快的方向就是梯度的负方向!这是我们日常经验得到的,其本质的原因到底是什么呢?也许很多同学还不太清楚。没关系,接下来我将以通俗的语言来详细解释梯度下降算法公式的数学推导过程。
我们来看一个下山问题!
假设我们位于黄山的某个山腰处,山势连绵不绝,不知道怎么下山。于是决定走一步算一步,也就是每次沿着当前位置最陡峭最易下山的方向前进一小步,然后继续沿下一个位置最陡方向前进一小步。这样一步一步走下去,一直走到了山脚。这里的下山最陡的方向就是梯度的负方向。
首先理解什么是梯度?通俗来说,梯度就是表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在当前位置的导数。梯度的公式在这里:
∇=df(θ)dθ\nabla=\frac{df(\theta)}{d\theta}∇