机器学习100天(十三):013 最通俗地理解梯度下降算法

本文以通俗的语言解释了梯度下降算法,将其比喻为下山问题,介绍了梯度的含义、梯度下降公式,并通过一阶泰勒展开式探讨了算法的数学原理,帮助读者深入理解这一常用优化方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习100天,今天讲的是:最通俗地理解梯度下降算法!

一、下山问题

梯度下降算法的解释非常简单:局部下降最快的方向就是梯度的负方向!这是我们日常经验得到的,其本质的原因到底是什么呢?也许很多同学还不太清楚。没关系,接下来我将以通俗的语言来详细解释梯度下降算法公式的数学推导过程。

我们来看一个下山问题!
在这里插入图片描述

假设我们位于黄山的某个山腰处,山势连绵不绝,不知道怎么下山。于是决定走一步算一步,也就是每次沿着当前位置最陡峭最易下山的方向前进一小步,然后继续沿下一个位置最陡方向前进一小步。这样一步一步走下去,一直走到了山脚。这里的下山最陡的方向就是梯度的负方向。

首先理解什么是梯度?通俗来说,梯度就是表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在当前位置的导数。梯度的公式在这里:

∇=df(θ)dθ\nabla=\frac{df(\theta)}{d\theta}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

红色石头Will

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值