现实窃取攻击:社交网络安全新挑战
1. 社交网络价值与信息窃取
在网络世界中,大型网络尤其是社交网络的效用与网络规模密切相关。Reed 定律指出,大型网络的效用会随网络规模呈指数级增长。这是因为网络参与者可能形成的子群体数量与参与者数量 N 呈指数关系,远超 Metcalfe 定律所体现的 $N^2$ 规模增长,Metcalfe 定律常用于表示电信网络的价值。
我们进一步认为,学习网络背后的“社交原则”具有重要价值。假设在时间 t 时,攻击者窃取了 $|E|L_E(t)$ 条边,以 $K_E$ 表示网络 G 中可编码的最大信息量,通过对已获取边的比例进行归一化处理,可得到网络中信息的表达式。归一化后,获取的子网络的社交本质可表示为:
$L_S(t) = L_E(t)^{\frac{l(G) \cdot K_E}{\log_2|E|}}$
其中,$K_E$ 代表网络复杂度,$l(G)$ 代表其社交家族的复杂度。
为验证社交可学习性这一衡量指标的重要性,我们对几个不同的现实世界社交网络进行了分析,包括社会进化实验网络、现实挖掘网络以及朋友和家庭实验网络。结果显示,社会进化网络比现实挖掘网络更难窃取,但比朋友和家庭网络更容易窃取。这是因为现实挖掘实验是在相对静态的工作环境中跟踪人员,而社会进化实验发生在麻省理工学院的本科生宿舍,学生的移动和互动模式更为复杂。朋友和家庭数据集涉及更复杂的互动,因为它包含了不同类型的夫妻群体,增加了网络中封装的信息量。
此外,尽管两个朋友和家庭网络在信息量、含义和网络信息维度上有显著差异,但由于它们本质上代表了同一社交群体,其社交可学习性指标值非常相似。网络的社交熵也很重要,通过对现实挖掘网络不同社交熵值的分析可以看