对话式人工智能:原理、挑战与规则方法
对话在人类交流中占据着核心地位。正如苏格拉底所说,与长者交谈能让我们了解他们的人生经历。在计算机技术领域,对话式人工智能(Conversational AI)则致力于实现计算机与人类之间自然流畅的对话交流。
1. 对话式人工智能概述
对话是两个或更多参与者之间的交互交流。传统的问答(Q&A)模式是用户向计算机提问,计算机利用知识资源给出回答,可看作是一种请求 - 响应的情况。而对话式人工智能则将其拓展为用户与计算机之间持续的思想交流。
人类的对话涉及多个层面,具有高度的智能性。不同参与者之间的对话具有独特性,例如朋友之间的对话通常较为随意,可能有共同的背景和“内部笑话”;而客户与电信公司客服的对话则更正式,有特定的目标和有限的共享背景。此外,对话的渠道也会影响对话的形式,如面对面交流、视频通话或手机聊天应用等。
对话式人工智能是指人工智能体与人类用户进行对话的 AI 方法。在本书中,我们主要讨论基于文本的方法,展示不同代自然语言处理(NLP)技术如何处理对话中的用词选择、上下文理解等方面。
2. 问题定义
对话式人工智能主要处理能与人类进行对话的智能体。在对话的每一步,输入是用户的话语和对话上下文,输出是对话智能体生成的文本。
对话式人工智能可分为特定任务型和通用型聊天机器人。特定任务型智能体的对话目的明确,例如电商网站上帮助客户寻找商品的 AI 智能体,其对话流程和主题相对有限。通用型聊天机器人则进行一般性对话,可能具有特定的“人设”,如客服聊天机器人需礼貌友好,医生聊天机器人需友善且不评判。智能手机上的对话智能体就是对话式人工智能的例子,但它们的对