MATLAB中线性方程的特殊求解方法
1. 线性方程求解概述
在处理线性微分方程模型时,MATLAB提供了一些便捷的工具。虽然有通用方法可求线性微分方程的解析解,但在某些情况下,使用数值方法求解更为方便。例如,当强迫函数复杂或微分方程阶数高于2时,获取解析解的代数运算可能得不偿失,尤其是主要目的是得到解的图形时。
2. 矩阵方法
2.1 矩阵形式转换
以质量 - 弹簧 - 阻尼系统为例,其运动方程为 (m\ddot{y} + c\dot{y} + ky = u(t))。通过令 (x_1 = y) 和 (x_2 = \dot{y}),可将其转化为柯西形式:
(\dot{x}_1 = x_2)
(\dot{x}_2 = \frac{1}{m}u(t) - \frac{k}{m}x_1 - \frac{c}{m}x_2)
写成矩阵方程为 (\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u(t)),其中
(\mathbf{A} = \begin{bmatrix}0 & 1 \ -\frac{k}{m} & -\frac{c}{m}\end{bmatrix}),(\mathbf{B} = \begin{bmatrix}0 \ \frac{1}{m}\end{bmatrix}),(\mathbf{x} = \begin{bmatrix}x_1 \ x_2\end{bmatrix})
2.2 代码示例
以下是一个使用矩阵运算的函数文件示例,假设 (m = 1),(c = 2),(k = 5),外加力 (u(t)