Gemini-Cli 和 claude code 到底怎么选?

        Gemini-Cli 发布也有些时日了,相信不少小伙伴都已经上手体验过了,那么他和claude code 有什么区别呢? 应该选择哪个来使用。

我们先看看他们各自的特点以及定价:

Claude Code(Anthropic)

  • 是一款面向 终端开发者 的 agent,基于 Claude 4(如 Opus 4、Sonnet 4)构建,强调强大的推理能力、上下文理解和多文件联动操作 

  • 支持子代理(sub-agent)架构,能够将任务拆分为多个子任务并行处理,实现类多智能体协作

  • 商业付费产品,订阅费用较高

Gemini CLI(Google)

  • 免费、开源(Apache 2.0),通过终端即可调用 Gemini 2.5 Pro 模型 

  • 支持高达 1M token 上下文窗口,适合大型代码库 

  • 每分钟最多 60 请求,日限 1000 请求,免费配额非常慷慨 

  • 没有付费版本,目前依赖社区驱动持续优化。

核心优势对比

特性Claude CodeGemini CLI
模型理解深度对复杂逻辑、多文件关系理解力强 理解能力仍在成长,较短上下文语境下更佳
子代理能力支持,具备强大并行子任务能力 暂不支持“子代理”层级,可串行并行工具调用
上下文窗口支持数十万 token(文件级别)高达 1M token,处理超大项目更适合 
价格收费(适合企业)免费, 开源,适合个人和团队免费使用
部署环境CLI,支持终端/VS Code/企业集成 CLI 同样支持终端和 IDE 集成,开源社区版本
速度与配额响应稳定,适合深度分析高速响应但日配额限制,复杂分析会受限 
定制性商业封闭,定制能力受限高度可定制,社区驱动,源代码可改动

总的来看,两者各有千秋。Claude Code 拥有更成熟的推理架构与深度代码理解,但价格较高;而 Gemini CLI 则以优秀的上下文处理、免费开源和速度快为优势,具备很高的性价比。

如果我们只想简单使用ai 来帮助我们辅助开发,或者是想上手体验下ai 编程的效果,我们直接选择 geimini-cli 即可,gemini-cli 上手简单,并且免费。配置步骤也比较简单,只需要几步就能够直接上手使用。

如果有特定的需求,对代码能力要求较高,项目较为复杂的话建议使用claude code ,claude code 在代码能力上还是超过 gemini-cli 的,并且对多文件的理解能力好,预算充足的话可以直接上,毕竟每月的费用还是比较贵的。

我目前很看好 gemini-cli,它有着开源力量和无限可能,社区的活跃能推动它快速迭代,适应各种新需求,开发者们也可以自由定制,将其打造成完全贴合自己工作流的专属助手。

并且 gemini-cli 还有很多其他的使用场景,他就像在你电脑里面装了一个智能工具,不只是在代码层面,我们可以用它来出来我们的文件,对文件进行分析和提炼,对数据分析和处理,与现有工作流集成等等。

还没试过的朋友?强烈建议你立即体验一下 Gemini-CLI! 免费、开源、功能强大,安装只需几步。感受一下开源 AI 助手的魅力,探索它如何改变你与计算机交互的方式。毕竟,免费又好用的智能工具,不用就太可惜了!它的发展,正需要你我这样的使用者共同参与和见证。

<think>好的,我需要帮助用户在VSCode中配置部署DeepSeekClaude大语言模型。首先,我应该回顾用户提供的引用内容,看看有没有相关的配置信息。 根据引用[1],用户提到在config.json中使用的是1.5B的本地ollama模型,而不是DeepSeek模型。这里需要解释为什么不使用DeepSeek,可能涉及到混合部署的问题。引用[2]详细说明了如何在VSCode中混合使用本地小模型云端大模型,比如DeepSeek R1-7B处理简单查询,复杂任务则调用云端API。这应该涉及到扩展安装配置不同的模型处理不同请求类型。引用[3]对比了Claude 3.7DeepSeek-R1,提到Claude支持虚拟HID设备控制,可能在多模态开发中有优势,但配置方法可能不同。 用户的问题是如何在VSCode中配置这两个模型。我需要分步骤说明,首先安装必要的扩展,比如CodeGPT或继续使用DeepSeek R1的扩展。然后配置本地云端模型,可能涉及到API密钥的设置。对于Claude,可能需要通过API访问,因为Claude不像DeepSeek可能有现成的扩展。需要指导用户获取API密钥并配置到VSCode中。 另外,用户提供的示例中提到了混合部署的架构图,可能需要说明如何设置请求分流,简单任务用本地模型,复杂任务用云端。同时,Claude的多模态支持可能需要额外步骤,比如安装特定插件或配置虚拟设备。 需要注意的是,确保所有步骤符合安全要求,比如API密钥的保密,使用HTTPS连接等。还要提醒用户注意模型的使用限制成本,尤其是调用云端API时可能产生的费用。 最后,生成相关问题,可能涉及性能优化、不同模型的应用场景比较,或者如何结合使用多个模型提升开发效率。</think>以下是在VSCode中配置DeepSeekClaude大语言模型的详细指南,结合混合部署方案: ### 一、DeepSeek模型部署 1. **安装基础环境** - 安装Python 3.8+Node.js - 通过VSCode扩展商店安装CodeGPT或DeepSeek官方扩展 2. **混合架构配置** ```json // config.json { "model_strategy": { "local_model": "ollama/deepseek-r1-7b", "cloud_model": "deepseek-pro", "threshold": 1024 // 字符数超过此值触发云端模型 }, "api_keys": { "deepseek": "sk-your-api-key" } } ``` 混合架构通过请求类型自动分流:简单查询由本地1.5B模型处理,复杂任务调用云端API[^2] 3. **本地模型部署(可)** ```bash ollama run deepseek-r1:7b # 需至少16GB内存 ``` ### 二、Claude模型集成 1. **API接入配置** - 在Anthropic官网创建API密钥 - 安装CLAUDE扩展并配置: ```json { "claude.api_key": "sk-ant-your-key", "claude.max_tokens": 4096 } ``` 2. **多模态开发支持** - 安装VirtualHID扩展实现设备控制 - 配置多模型协作工作流: ```python # .vscode/workflow.py def model_router(task): if "multimodal" in task: return claude3_sonnet() elif "code" in task: return deepseek_r1() ``` ### 三、联合调试技巧 1. 使用模型性能监控插件观察资源占用 2. 设置智能回退机制: ```json { "fallback": { "retries": 2, "primary": "deepseek", "backup": "claude" } } ``` 3. 通过快捷键切换模型:`Ctrl+Shift+M`打开模型择面板
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梦里有颗北极星

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值