【Leetcode】198. House Robber - - 【动态规划】

本文探讨了一个经典的计算机科学问题——打家劫舍。通过动态规划的方法来解决这一问题,确保在不触动相邻房屋警报的情况下获得最大的抢劫金额。文章提供了一段Java代码实现,并解释了动态规划背后的逻辑。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected andit will automatically contact the police if two adjacent houses were broken into on the same night.

Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonightwithout alerting the police.


思路分析:http://www.cnblogs.com/ganganloveu/p/4417485.html

动态规划,设置maxV[i]表示到第i个房子位置,最大收益。

递推关系为maxV[i] = max(maxV[i-2]+num[i], maxV[i-1])

注:可能会对上述递推关系产生疑问,是否存在如下可能性,maxV[i-1]并不含num[i-1]?

结论是,在这种情况下maxV[i-1]等同于maxV[i-2],因此前者更大。


另外一个参考:http://blog.csdn.net/xudli/article/details/44795737



import java.lang.Math.*;
public class Solution {
    public int rob(int[] nums) {
        if(nums.length == 0) return 0;
        if(nums.length == 1) return nums[0];
        
        int[] robSum = new int[nums.length];

        robSum[0] = nums[0];
        robSum[1] = Math.max(nums[0],nums[1]);
        
        for(int i = 2 ; i < nums.length ; i++){
            robSum[i] = Math.max(robSum[i-2]+nums[i],robSum[i-1]);
        }
        
        return robSum[nums.length-1];//得到的最后结果是全局最优解
    }
}

Runtime: 0 ms

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值