L2-020 功夫传人 (25 分)
一门武功能否传承久远并被发扬光大,是要看缘分的。一般来说,师傅传授给徒弟的武功总要打个折扣,于是越往后传,弟子们的功夫就越弱…… 直到某一支的某一代突然出现一个天分特别高的弟子(或者是吃到了灵丹、挖到了特别的秘笈),会将功夫的威力一下子放大N倍 —— 我们称这种弟子为“得道者”。
这里我们来考察某一位祖师爷门下的徒子徒孙家谱:假设家谱中的每个人只有1位师傅(除了祖师爷没有师傅);每位师傅可以带很多徒弟;并且假设辈分严格有序,即祖师爷这门武功的每个第i
代传人只能在第i-1
代传人中拜1个师傅。我们假设已知祖师爷的功力值为Z
,每向下传承一代,就会减弱r%
,除非某一代弟子得道。现给出师门谱系关系,要求你算出所有得道者的功力总值。
输入格式:
输入在第一行给出3个正整数,分别是:N(≤105)——整个师门的总人数(于是每个人从0到N−1编号,祖师爷的编号为0);Z——祖师爷的功力值(不一定是整数,但起码是正数);r ——每传一代功夫所打的折扣百分比值(不超过100的正数)。接下来有N行,第i行(i=0,⋯,N−1)描述编号为i的人所传的徒弟,格式为:
Ki ID[1] ID[2] ⋯ ID[Ki]
其中Ki是徒弟的个数,后面跟的是各位徒弟的编号,数字间以空格间隔。Ki为零表示这是一位得道者,这时后面跟的一个数字表示其武功被放大的倍数。
输出格式:
在一行中输出所有得道者的功力总值,只保留其整数部分。题目保证输入和正确的输出都不超过1010。
输入样例:
10 18.0 1.00
3 2 3 5
1 9
1 4
1 7
0 7
2 6 1
1 8
0 9
0 4
0 3
输出样例:
404
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e5 + 100;
const int inf = 0x3f3f3f3f;
double z, r;
int val[maxn];
vector<int> s[maxn];
double ans;
void dfs(int x, double z) {
if (val[x]) ans += z * val[x];
else {
for (int i = 0; i < s[x].size(); i++)
dfs(s[x][i], z * r);
}
}
int main() {
//freopen("out.txt", "r", stdin);
int n, a, v;
cin >> n >> z >> r;
r = 1 - r * 0.01;
for (int i = 0; i < n; i++) {
cin >> a;
if (!a) cin >> val[i];
else {
while (a--){
cin >> v;
s[i].push_back(v);
}
}
}
dfs(0, z);
printf("%d\n", (int) ans);
return 0;
}
L2-016 愿天下有情人都是失散多年的兄妹 (25 分)
呵呵。大家都知道五服以内不得通婚,即两个人最近的共同祖先如果在五代以内(即本人、父母、祖父母、曾祖父母、高祖父母)则不可通婚。本题就请你帮助一对有情人判断一下,他们究竟是否可以成婚?
输入格式:
输入第一行给出一个正整数N
(2 ≤ N
≤104),随后N
行,每行按以下格式给出一个人的信息:
本人ID 性别 父亲ID 母亲ID
其中ID
是5位数字,每人不同;性别M
代表男性、F
代表女性。如果某人的父亲或母亲已经不可考,则相应的ID
位置上标记为-1
。
接下来给出一个正整数K
,随后K
行,每行给出一对有情人的ID
,其间以空格分隔。
注意:题目保证两个人是同辈,每人只有一个性别,并且血缘关系网中没有乱伦或隔辈成婚的情况。
输出格式:
对每一对有情人,判断他们的关系是否可以通婚:如果两人是同性,输出Never Mind
;如果是异性并且关系出了五服,输出Yes
;如果异性关系未出五服,输出No
。
输入样例:
24
00001 M 01111 -1
00002 F 02222 03333
00003 M 02222 03333
00004 F 04444 03333
00005 M 04444 05555
00006 F 04444 05555
00007 F 06666 07777
00008 M 06666 07777
00009 M 00001 00002
00010 M 00003 00006
00011 F 00005 00007
00012 F 00008 08888
00013 F 00009 00011
00014 M 00010 09999
00015 M 00010 09999
00016 M 10000 00012
00017 F -1 00012
00018 F 11000 00013
00019 F 11100 00018
00020 F 00015 11110
00021 M 11100 00020
00022 M 00016 -1
00023 M 10012 00017
00024 M 00022 10013
9
00021 00024
00019 00024
00011 00012
00022 00018
00001 00004
00013 00016
00017 00015
00019 00021
00010 00011
输出样例:
Never Mind
Yes
Never Mind
No
Yes
No
Yes
No
No
dfs,奈何一直脑子转不过来dfs,唉
坑是可能查询某人父母,所以父母的性别也必须存下来
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e6 + 100;
const int inf = 0x3f3f3f3f;
const double ex = 1e-8;
struct node {
char sex;
int fa, ma, v;
} s[maxn];
int f;
void dfs(int k, int a, int b) {
if (!f) return;
if (a == -1 || b == -1) return;
if (k > 5) return;
if (a == b && k <= 5) {
f = 0;
return;
}
if (!s[a].v || !s[b].v) return;
dfs(k + 1, s[a].fa, s[b].fa);
dfs(k + 1, s[a].fa, s[b].ma);
dfs(k + 1, s[a].ma, s[b].ma);
dfs(k + 1, s[a].ma, s[b].fa);
}
int main() {
int n;
cin>>n;
int id, fa, ma;
char sex;
for (int i = 1; i < maxn; i++) {
s[i].v = 0;
}
for (int i = 1; i <= n; i++) {
cin >> id >> sex >> fa >> ma;
s[id].sex = sex;
s[id].fa = fa;
s[id].ma = ma;
s[id].v = 1;
if (fa != -1) s[fa].sex = 'M';
if (ma != -1) s[ma].sex = 'F';
}
int k, a, b;
cin >> k;
while (k--) {
cin >> a >> b;
if (s[a].sex == s[b].sex) {
puts("Never Mind");
continue;
}
f = 1;
dfs(1, a, b);
if (f) puts("Yes");
else puts("No");
}
return 0;
}
L2-2 小字辈 (25 分)
本题给定一个庞大家族的家谱,要请你给出最小一辈的名单。
输入格式:
输入在第一行给出家族人口总数 N(不超过 100 000 的正整数) —— 简单起见,我们把家族成员从 1 到 N 编号。随后第二行给出 N 个编号,其中第 i 个编号对应第 i 位成员的父/母。家谱中辈分最高的老祖宗对应的父/母编号为 -1。一行中的数字间以空格分隔。
输出格式:
首先输出最小的辈分(老祖宗的辈分为 1,以下逐级递增)。然后在第二行按递增顺序输出辈分最小的成员的编号。编号间以一个空格分隔,行首尾不得有多余空格。
输入样例:
9
2 6 5 5 -1 5 6 4 7
输出样例:
4
1 9
代码:
#include <iostream>
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=1e5+100;
const int inf=0x3f3f3f3f;
int pre;
int n,star,cnt,tot,maxx=1;
int ans[maxn];
vector<int> s[maxn];
void dfs(int x,int cnt)
{
if(s[x].size()==0){
if(maxx<cnt){
maxx=cnt,tot=0;
ans[tot++]=x;
}
else if(maxx==cnt) ans[tot++]=x;
}
else{
for(int i=0; i<s[x].size(); i++){
dfs(s[x][i],cnt+1);
}
}
}
int main()
{
cin>>n;
for(int i=1; i<=n; i++){
cin>>pre;
if(pre==-1) star=i;
else s[pre].push_back(i);
}
dfs(star,1);
cout<<maxx<<endl<<ans[0];
for(int i=1; i<tot; i++)
cout<<" "<<ans[i];
cout<<endl;
return 0;
}
L3-015 球队“食物链” (30 分)
某国的足球联赛中有N支参赛球队,编号从1至N。联赛采用主客场双循环赛制,参赛球队两两之间在双方主场各赛一场。
联赛战罢,结果已经尘埃落定。此时,联赛主席突发奇想,希望从中找出一条包含所有球队的“食物链”,来说明联赛的精彩程度。“食物链”为一个1至N的排列{ T1 T2 ⋯ TN },满足:球队T1战胜过球队T2,球队T2战胜过球队T3,⋯,球队T(N−1)战胜过球队TN,球队TN战胜过球队T1。
现在主席请你从联赛结果中找出“食物链”。若存在多条“食物链”,请找出字典序最小的。
注:排列{ a1 a2 ⋯ aN}在字典序上小于排列{ b1 b2 ⋯ bN },当且仅当存在整数K(1≤K≤N),满足:aK<bK且对于任意小于K的正整数i,ai=bi。
输入格式:
输入第一行给出一个整数N(2≤N≤20),为参赛球队数。随后N行,每行N个字符,给出了N×N的联赛结果表,其中第i行第j列的字符为球队i在主场对阵球队j的比赛结果:W
表示球队i战胜球队j,L
表示球队i负于球队j,D
表示两队打平,-
表示无效(当i=j时)。输入中无多余空格。
输出格式:
按题目要求找到“食物链”T1 T2 ⋯ TN,将这N个数依次输出在一行上,数字间以1个空格分隔,行的首尾不得有多余空格。若不存在“食物链”,输出“No Solution”。
输入样例1:
5
-LWDW
W-LDW
WW-LW
DWW-W
DDLW-
输出样例1:
1 3 5 4 2
输入样例2:
5
-WDDW
D-DWL
DD-DW
DDW-D
DDDD-
输出样例2:
No Solution
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 30;
const int inf = 0x3f3f3f3f;
char s[maxn];
int n;
int mapp[maxn][maxn];
int vis[maxn];
vector<int> t;
int star;
bool check() {
for (int i = 0; i < n; i++) {
if (!vis[i] && mapp[i][star]) return 1;
}
return 0;
}
void dfs(int x, int k) {
for (int i = 0; check() && i < n; i++) {
if (!vis[i] && mapp[x][i]) {
vis[i] = 1;
t.push_back(i);
if (mapp[i][star] && k == n - 2) {
for (int j = 0; j < n; j++) {
if (j == 0) cout << t[j] + 1;
else cout << " " << t[j] + 1;
}
cout << endl;
exit(0);
} else dfs(i, k + 1);
t.pop_back();
vis[i] = 0;
}
}
}
int main() {
//freopen("out.txt", "r", stdin);
scanf("%d", &n);
for (int i = 0; i < n; i++) {
scanf("%s", s);
for (int j = 0; j < n; j++) {
if (s[j] == 'W') mapp[i][j] = 1;
else if (s[j] == 'L') mapp[j][i] = 1;
}
}
for (int i = 0; i < n; i++) {
star = i;
t.push_back(star);
vis[star] = 1;
dfs(star, 0);
vis[star] = 0;
t.pop_back();
}
cout << "No Solution" << endl;
return 0;
}