天梯赛模拟赛 dfs

L2-020 功夫传人 (25 分)

一门武功能否传承久远并被发扬光大,是要看缘分的。一般来说,师傅传授给徒弟的武功总要打个折扣,于是越往后传,弟子们的功夫就越弱…… 直到某一支的某一代突然出现一个天分特别高的弟子(或者是吃到了灵丹、挖到了特别的秘笈),会将功夫的威力一下子放大N倍 —— 我们称这种弟子为“得道者”。

这里我们来考察某一位祖师爷门下的徒子徒孙家谱:假设家谱中的每个人只有1位师傅(除了祖师爷没有师傅);每位师傅可以带很多徒弟;并且假设辈分严格有序,即祖师爷这门武功的每个第i代传人只能在第i-1代传人中拜1个师傅。我们假设已知祖师爷的功力值为Z,每向下传承一代,就会减弱r%,除非某一代弟子得道。现给出师门谱系关系,要求你算出所有得道者的功力总值。

输入格式:

输入在第一行给出3个正整数,分别是:N(≤10​5​​)——整个师门的总人数(于是每个人从0到N−1编号,祖师爷的编号为0);Z——祖师爷的功力值(不一定是整数,但起码是正数);r ——每传一代功夫所打的折扣百分比值(不超过100的正数)。接下来有N行,第i行(i=0,⋯,N−1)描述编号为i的人所传的徒弟,格式为:

K​i​​ ID[1] ID[2] ⋯ ID[K​i​​]

其中K​i​​是徒弟的个数,后面跟的是各位徒弟的编号,数字间以空格间隔。K​i​​为零表示这是一位得道者,这时后面跟的一个数字表示其武功被放大的倍数。

输出格式:

在一行中输出所有得道者的功力总值,只保留其整数部分。题目保证输入和正确的输出都不超过10​10​​。

输入样例:

10 18.0 1.00
3 2 3 5
1 9
1 4
1 7
0 7
2 6 1
1 8
0 9
0 4
0 3

输出样例:

404

代码:

#include <bits/stdc++.h>

using namespace std;
typedef long long ll;
const int maxn = 1e5 + 100;
const int inf = 0x3f3f3f3f;
double z, r;
int val[maxn];
vector<int> s[maxn];
double ans;

void dfs(int x, double z) {
    if (val[x]) ans += z * val[x];
    else {
        for (int i = 0; i < s[x].size(); i++)
            dfs(s[x][i], z * r);
    }
}

int main() {
    //freopen("out.txt", "r", stdin);
    int n, a, v;
    cin >> n >> z >> r;
    r = 1 - r * 0.01;
    for (int i = 0; i < n; i++) {
        cin >> a;
        if (!a) cin >> val[i];
        else {
            while (a--){
                cin >> v;
                s[i].push_back(v);
            }
        }
    }
    dfs(0, z);
    printf("%d\n", (int) ans);
    return 0;
}

 

L2-016 愿天下有情人都是失散多年的兄妹 (25 分)

呵呵。大家都知道五服以内不得通婚,即两个人最近的共同祖先如果在五代以内(即本人、父母、祖父母、曾祖父母、高祖父母)则不可通婚。本题就请你帮助一对有情人判断一下,他们究竟是否可以成婚?

输入格式:

输入第一行给出一个正整数N(2 ≤ N ≤10​4​​),随后N行,每行按以下格式给出一个人的信息:

本人ID 性别 父亲ID 母亲ID

其中ID是5位数字,每人不同;性别M代表男性、F代表女性。如果某人的父亲或母亲已经不可考,则相应的ID位置上标记为-1

接下来给出一个正整数K,随后K行,每行给出一对有情人的ID,其间以空格分隔。

注意:题目保证两个人是同辈,每人只有一个性别,并且血缘关系网中没有乱伦或隔辈成婚的情况。

输出格式:

对每一对有情人,判断他们的关系是否可以通婚:如果两人是同性,输出Never Mind;如果是异性并且关系出了五服,输出Yes;如果异性关系未出五服,输出No

输入样例:

24
00001 M 01111 -1
00002 F 02222 03333
00003 M 02222 03333
00004 F 04444 03333
00005 M 04444 05555
00006 F 04444 05555
00007 F 06666 07777
00008 M 06666 07777
00009 M 00001 00002
00010 M 00003 00006
00011 F 00005 00007
00012 F 00008 08888
00013 F 00009 00011
00014 M 00010 09999
00015 M 00010 09999
00016 M 10000 00012
00017 F -1 00012
00018 F 11000 00013
00019 F 11100 00018
00020 F 00015 11110
00021 M 11100 00020
00022 M 00016 -1
00023 M 10012 00017
00024 M 00022 10013
9
00021 00024
00019 00024
00011 00012
00022 00018
00001 00004
00013 00016
00017 00015
00019 00021
00010 00011

输出样例:

Never Mind
Yes
Never Mind
No
Yes
No
Yes
No
No

dfs,奈何一直脑子转不过来dfs,唉

坑是可能查询某人父母,所以父母的性别也必须存下来

代码:

#include <bits/stdc++.h>

using namespace std;
typedef long long ll;
const int maxn = 1e6 + 100;
const int inf = 0x3f3f3f3f;
const double ex = 1e-8;
struct node {
    char sex;
    int fa, ma, v;
} s[maxn];
int f;

void dfs(int k, int a, int b) {
    if (!f) return;
    if (a == -1 || b == -1) return;
    if (k > 5) return;
    if (a == b && k <= 5) {
        f = 0;
        return;
    }
    if (!s[a].v || !s[b].v) return;
    dfs(k + 1, s[a].fa, s[b].fa);
    dfs(k + 1, s[a].fa, s[b].ma);
    dfs(k + 1, s[a].ma, s[b].ma);
    dfs(k + 1, s[a].ma, s[b].fa);
}

int main() {
    int n;
    cin>>n;
    int id, fa, ma;
    char sex;
    for (int i = 1; i < maxn; i++) {
        s[i].v = 0;
    }
    for (int i = 1; i <= n; i++) {
        cin >> id >> sex >> fa >> ma;
        s[id].sex = sex;
        s[id].fa = fa;
        s[id].ma = ma;
        s[id].v = 1;
        if (fa != -1) s[fa].sex = 'M';
        if (ma != -1) s[ma].sex = 'F';
    }
    int k, a, b;
    cin >> k;
    while (k--) {
        cin >> a >> b;
        if (s[a].sex == s[b].sex) {
            puts("Never Mind");
            continue;
        }
        f = 1;
        dfs(1, a, b);
        if (f) puts("Yes");
        else puts("No");
    }
    return 0;
}

 

L2-2 小字辈 (25 分)

本题给定一个庞大家族的家谱,要请你给出最小一辈的名单。

输入格式:

输入在第一行给出家族人口总数 N(不超过 100 000 的正整数) —— 简单起见,我们把家族成员从 1 到 N 编号。随后第二行给出 N 个编号,其中第 i 个编号对应第 i 位成员的父/母。家谱中辈分最高的老祖宗对应的父/母编号为 -1。一行中的数字间以空格分隔。

输出格式:

首先输出最小的辈分(老祖宗的辈分为 1,以下逐级递增)。然后在第二行按递增顺序输出辈分最小的成员的编号。编号间以一个空格分隔,行首尾不得有多余空格。

输入样例:

9
2 6 5 5 -1 5 6 4 7

输出样例:

4
1 9

代码:

#include <iostream>
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=1e5+100;
const int inf=0x3f3f3f3f;
int pre;
int n,star,cnt,tot,maxx=1;
int ans[maxn];
vector<int> s[maxn];
void dfs(int x,int cnt)
{
    if(s[x].size()==0){
        if(maxx<cnt){
            maxx=cnt,tot=0;
            ans[tot++]=x;
        }
        else if(maxx==cnt) ans[tot++]=x;
    }
    else{
        for(int i=0; i<s[x].size(); i++){
            dfs(s[x][i],cnt+1);
        }
    }

}
int main()
{
    cin>>n;
    for(int i=1; i<=n; i++){
        cin>>pre;
        if(pre==-1) star=i;
        else s[pre].push_back(i);
    }
    dfs(star,1);
    cout<<maxx<<endl<<ans[0];
    for(int i=1; i<tot; i++)
        cout<<" "<<ans[i];
    cout<<endl;
    return 0;
}

 

L3-015 球队“食物链” (30 分)

某国的足球联赛中有N支参赛球队,编号从1至N。联赛采用主客场双循环赛制,参赛球队两两之间在双方主场各赛一场。

联赛战罢,结果已经尘埃落定。此时,联赛主席突发奇想,希望从中找出一条包含所有球队的“食物链”,来说明联赛的精彩程度。“食物链”为一个1至N的排列{ T​1​​ T​2​​ ⋯ T​N​​ },满足:球队T​1​​战胜过球队T​2​​,球队T​2​​战胜过球队T​3​​,⋯,球队T​(N−1)​​战胜过球队T​N​​,球队T​N​​战胜过球队T​1​​。

现在主席请你从联赛结果中找出“食物链”。若存在多条“食物链”,请找出字典序最小的。

注:排列{ a​1​​ a​2​​ ⋯ a​N​​}在字典序上小于排列{ b​1​​ b​2​​ ⋯ b​N​​ },当且仅当存在整数K(1≤K≤N),满足:a​K​​<b​K​​且对于任意小于K的正整数i,a​i​​=b​i​​。

输入格式:

输入第一行给出一个整数N(2≤N≤20),为参赛球队数。随后N行,每行N个字符,给出了N×N的联赛结果表,其中第i行第j列的字符为球队i在主场对阵球队j的比赛结果:W表示球队i战胜球队j,L表示球队i负于球队j,D表示两队打平,-表示无效(当i=j时)。输入中无多余空格。

输出格式:

按题目要求找到“食物链”T​1​​ T​2​​ ⋯ T​N​​,将这N个数依次输出在一行上,数字间以1个空格分隔,行的首尾不得有多余空格。若不存在“食物链”,输出“No Solution”。

输入样例1:

5
-LWDW
W-LDW
WW-LW
DWW-W
DDLW-

输出样例1:

1 3 5 4 2

输入样例2:

5
-WDDW
D-DWL
DD-DW
DDW-D
DDDD-

输出样例2:

No Solution

代码:

#include <bits/stdc++.h>

using namespace std;
typedef long long ll;
const int maxn = 30;
const int inf = 0x3f3f3f3f;
char s[maxn];
int n;
int mapp[maxn][maxn];
int vis[maxn];
vector<int> t;
int star;

bool check() {
    for (int i = 0; i < n; i++) {
        if (!vis[i] && mapp[i][star]) return 1;
    }
    return 0;
}

void dfs(int x, int k) {
    for (int i = 0; check() && i < n; i++) {
        if (!vis[i] && mapp[x][i]) {
            vis[i] = 1;
            t.push_back(i);
            if (mapp[i][star] && k == n - 2) {
                for (int j = 0; j < n; j++) {
                    if (j == 0) cout << t[j] + 1;
                    else cout << " " << t[j] + 1;
                }
                cout << endl;
                exit(0);
            } else dfs(i, k + 1);
            t.pop_back();
            vis[i] = 0;
        }
    }
}

int main() {
    //freopen("out.txt", "r", stdin);
    scanf("%d", &n);
    for (int i = 0; i < n; i++) {
        scanf("%s", s);
        for (int j = 0; j < n; j++) {
            if (s[j] == 'W') mapp[i][j] = 1;
            else if (s[j] == 'L') mapp[j][i] = 1;
        }
    }
    for (int i = 0; i < n; i++) {
        star = i;
        t.push_back(star);
        vis[star] = 1;
        dfs(star, 0);
        vis[star] = 0;
        t.pop_back();
    }
    cout << "No Solution" << endl;
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值