深度学习笔记(五)用Torch实现RNN来制作一个神经网络计时器

本文介绍了如何使用Torch实现一个RNN神经网络计时器。通过RNN的回路特性,网络能记住状态并根据输入脉冲进行计时,输出表示计时状态。数据生成器"data_gen.lua"用于产生训练数据,网络结构包含输入层、隐藏层(20个节点)和输出层,隐藏层采用Sigmoid激活函数,整个网络用nn.Sequencer修饰以处理序列输入。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本节代码地址

https://github.com/vic-w/torch-practice/tree/master/rnn-timer

 

现在终于到了激动人心的时刻了。我最初选用Torch的目的就是为了学习RNN。RNN全称Recurrent Neural Network(递归神经网络),是通过在网络中增加回路而使其具有记忆功能。对自然语言处理,图像识别等方面都有深远影响。

这次我们要用RNN实现一个神经网络计时器,给定一个时间长度,它会等待直到时间结束,然后切换自己的状态。

如果用C语言实现一个计时器是一件非常简单的事。我们大概要这样写:

void timer(int delay_time)
{
    for(int i=0; i<delay_time; i++)
    {
        delay(1);
    }
    return;
}

但是用神经网络如何来实现呢?我们可以把RNN网络想想成一个黑盒,它有一个输入信号和一个输出信号。我想让输入和输出符合这样的关系:

蓝色是输入,绿色是输出。当输入信号产生一个脉冲时,计时器开始工作,计时的长度由脉冲的高度决定。计时器工作时,输出为1,停止工作时,输出为0。

要实现这个功

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值