
深度学习夏令营直通车
文章平均质量分 88
爱看烟花的码农
吉林大学大三学生
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
深度学习直通车——附录
贡献: 提出了完全基于自注意力机制的Transformer架构,抛弃了循环和卷积,实现了强大的并行计算能力和长距离依赖捕捉能力,彻底改变了NLP领域,并逐渐统一了AI各大领域。,而不是直接学习恒等映射。贡献: 展示了基于Transformer的双向、大规模预训练语言模型的巨大威力,开创了“预训练-微调”的新范式,是NLP发展史上的又一里程碑。贡献: 提出了批归一化(BN),一个简单而强大的技术,通过规范化层输入,显著加速了网络训练,提高了模型的稳定性,也是现代网络的标配。面试时若能提及,会是极大的加分项。原创 2025-07-07 04:23:22 · 848 阅读 · 0 评论 -
深度学习直通车——第10章:面试核心问题与回答框架
你的目标是向面试官证明,你不仅具备扎实的理论基础(与笔试机试相辅相成),还拥有解决实际问题的能力、快速学习的潜力和良好的沟通协作能力。问题的形式往往是“What -> Why -> How”的逐层深入,这能有效地区分“背题库”和“真理解”的学生。同学,夏令营的竞争是激烈的,但你的准备也是全面的。对于每一个你在项目中用到的,或者在本书中学到的核心技术点,都要用“What-Why-How”的框架来准备。保持谦虚、真诚、自信的态度,清晰地展示你的思考过程,你一定能给面试官留下深刻的印象。解释你为什么这么设计。原创 2025-07-07 04:14:31 · 927 阅读 · 0 评论 -
深度学习直通车——第9章:机试核心代码填空与编程实战 (NEW & CRITICAL)
在夏令营的角逐中,理论说得再好,最终也要落实到代码上。本章将是你从理论到实践的桥梁,也是你决胜机试的秘密武器。它不要求你从零搭建一个庞大的系统,而是通过“代码填空”或“模块实现”的形式,精准地考察你对深度学习核心概念的掌握程度。同学,请务必将本章的代码模板刻在脑海里。夏令营机试的时间非常宝贵,不允许你现场查阅资料或过多思考基础架构。实现一个简单的多层感知机(MLP),包含两个全连接层和一个ReLU激活函数。知道如何选择和使用损失函数,并编写评估模型性能的代码。的顺序时,你已经开始实现核心的。原创 2025-07-07 04:13:41 · 906 阅读 · 0 评论 -
深度学习直通车——第8章:高频笔试题与解题策略
我们将聚焦于夏令营笔试中最常见、最关键的四种题型,提供精准的解题策略和高质量的答案范例。请记住,笔试不仅考察你知识的广度,更考察你理解的深度和表达的清晰度。最好的学习方式是,遮住答案,自己尝试对每个问题进行口头或书面回答,然后再进行对比和修正。将这些答题框架内化为你的思维习惯,你将在考场上思如泉涌,下笔有神。这相当于为信息的传递提供了一条“高速公路”,保证了即使网络很深,信息(和梯度)也能顺畅地流动。这类问题考察你对深度学习核心原理的理解和宏观把握,要求你不仅知其然,更知其所以然。,不如让它去学习一个。原创 2025-07-07 04:11:20 · 800 阅读 · 0 评论 -
深度学习直通车——第7章:前沿热点与应用领域概览 (Cutting-edge Topics)
多模态能力使得AI能够完成更复杂的、跨模态的任务,比如根据一张图片写一首诗,或者根据一段文字描述生成视频,这在以前是无法想象的,极大地拓展了AI的应用场景。在掌握了核心模型和训练技巧后,了解当前最热门的研究方向和应用领域,不仅能拓展你的知识边界,更是夏令营面试中的加分项。生成模型的目标是学习数据的底层分布,并创造出全新的、与真实数据类似的数据。“这个领域的发展非常迅速,其技术基础通常是在大语言模型的基础上,融合了专门处理图像等其他模态的模块(如Vision Transformer, ViT)。原创 2025-07-07 04:05:54 · 631 阅读 · 0 评论 -
深度学习直通车——第6章:模型优化与训练技巧 (Optimization & Regularization)
但是,朴素的随机梯度下降(SGD)就像一个蒙着眼睛下山的人,步子小了走得慢,步子大了容易“扯着蛋”在山谷间来回震荡,甚至可能卡在某个平坦的区域(鞍点或局部极小值)动弹不得。然而,仅仅“搭建”出一个模型是远远不够的,就像你组装了一辆赛车,但如果不知道如何调校引擎、如何选择轮胎、如何防止车身过重,它依然无法在赛道上取得好成绩。通俗地说,就是用各种方法“限制”模型的学习能力,防止它在训练集上“学得太好”以至于把噪声和 случайные(随机)特征都学了进去,从而导致在测试集上表现不佳(即过拟合)。原创 2025-07-07 04:04:01 · 448 阅读 · 0 评论 -
深度学习直通车——第5章:Transformer与注意力机制——新时代的霸主 (Chapter 5: Attention & Transformer
也就是说,对于Self-Attention来说,“我爱你”和“你爱我”的初始计算结果是一样的,这显然是不可接受的。就好比一个专家委员会,面对一个复杂问题,每个专家(Head)从自己擅长的角度(子空间)进行分析,并给出一个“关注点”列表(Attention结果),最后将所有专家的意见汇总起来,形成一个更全面、更鲁棒的最终决策。与其进行一次高维度的自注意力计算,不如将Query, Key, Value线性投影到多个低维度的子空间中,在每个子空间里并行地进行注意力计算,最后再将所有“头”的结果拼接起来。原创 2025-07-07 04:02:34 · 862 阅读 · 0 评论 -
深度学习直通车——第4章:循环神经网络——序列数据的处理利器 (Recurrent Neural Networks)
从Vanilla RNN的“记忆”诞生,到其面临的“短期记忆”瓶颈(梯度消失/爆炸),再到LSTM和GRU通过精巧的门控机制(Gate)成功捕获长期依赖。因此,模型学不到“长期”的依赖关系,只剩下“短期”的记忆。通过这套“遗忘-输入-输出”的门控机制,LSTM能够智能地移除无用信息、添加有用信息,并在需要时将长期记忆输出,从而成功捕获到序列中的长期依赖关系。是一个不断被覆写的“笔记本”。最基础的循环神经网络,我们通常称之为“香草RNN”(Vanilla RNN),它通过一个巧妙的循环结构来引入记忆。原创 2025-07-07 03:30:03 · 824 阅读 · 0 评论 -
深度学习直通车——第3章:卷积神经网络——计算机视觉的王者 (Convolutional Neural Networks)
欢迎来到CNN的世界!在CNN的末端,通常会将最后一层池化层的输出“压平”(Flatten)成一个长长的一维向量,然后将其送入一个或多个全连接层。这部分与我们熟悉的MLP完全一样,它的作用是综合所有局部提取到的高级特征,进行非线性组合,最终映射到我们想要的输出上(例如,在图像分类任务中,输出一个包含各个类别概率的向量)。在本章中,我们深入探索了CNN的内部机制,从三大核心组件(卷积、池化、全连接)到其辉煌的架构演进史。接下来,我们将进入一个新的领域,学习如何处理序列数据,探索循环神经网络(RNN)的奥秘。原创 2025-07-07 03:17:09 · 516 阅读 · 0 评论 -
深度学习直通车——第2章:神经网络的基石——从感知机到多层感知机 (The Bedrock of Neural Networks)
一个包含至少一个隐藏层的MLP,只要拥有足够数量的神经元,理论上可以拟合任意复杂的连续函数。想象一下大脑中的一个神经元,它接收来自其他多个神经元的信号,经过处理后,决定自己是否要“兴奋”(激活)并传递信号。本章我们将从最简单的神经元模型——感知机出发,一步步揭开神经网络的面纱,理解它是如何从“浅层”走向“深度”的。这意味着,无论你的网络有多少层,它本质上都只是一个简单的线性模型(等价于一个单层的感知机)。这个问题和上一个关于激活函数的问题本质是相通的,都是考察对梯度下降法在非光滑函数上应用的理解。原创 2025-07-07 03:13:16 · 678 阅读 · 0 评论 -
深度学习直通车——第1章:数学与机器学习基础回顾 (Foundation Reloaded)
这不仅仅是“复习”,更是从深度学习的视角,重新理解这些工具的意义与威力。夏令营的笔试和面试中,对基础概念的深刻理解,往往是区分普通和优秀候选人的关键。所以,梯度下降就是这样一个简单而强大的方法:通过不断地朝着梯度(最陡峭)的相反方向(下坡)迈出合适的一小步,来逐步找到我们想要的最小值(例如,模型预测误差的最小值)。:到达新位置后,您再次环顾四周,找到新的最陡下坡方向,再迈出一步。:您的目标是走到这座山的最低点,也就是山谷的谷底。但是,因为雾太大了,您完全看不清远处的路,只能看到自己脚下的一小片区域。原创 2025-07-07 03:04:18 · 1176 阅读 · 0 评论