线性回归笔记

https://blog.51cto.com/u_16213589/7682076

残差图

多元回归-最小二乘法-残差分析笔记
一.多元线性回归模型的假设
我们需要进行以下六个假设,这些假设是经典的多元线性回归模型有效的前提:

1、因变量Y和自变量X1,X2,…,Xk之间的关系是线性的。

2、自变量(X1,X2,…,Xk)不是随机的。而且,两个或多个自变量之间不存在精确的线性关系。

3、以自变量为条件的残差的期望值为0:E(ε|X1,X2,…,Xk)=0。

4、残差项的方差对于所有观察值都是相同的:E(εi2)=σε2。

5、残差项在各个观测值之间是不相关的:E(εiεj)=0,j≠i。

6、残差项是正态分布的。

二.计量经济学中的普通最小二乘法(OLS)的4个基本假设条件分别为:
1、解释变量是确定变量,不是随机变量。
2、随机误差项具有零均值、同方差何不序列相关性。
3、随机误差项与解释变量之间不相关。
4、随机误差项服从零均值、同方差、零协方差的正态分布。

三.残差分析
(1)残差分析定义
在回归模型中,假定残差的期望值为0,方差相等且服从正态分布的一个随机变量。但是,若关于残差的假定不成立,此时所做的检验以及估计和预测也许站不住脚。确定有关残差的假定是否成立的方法之一是进行残差分析(residual analysis).

回归模型下的预测值和观测值之间的差异必须是随机不可预测的。
换句话说,在误差(error)中不应该含有任何可解释、可预测的信息。

(2)残差分析包括以下内容:
①残差是否服从均值为零的正态分布;

②残差是否为等方差的正态分布;

③残差序列是否独立;

④借助残差探测样本中的异常值。</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值