svm原理

一维数据

间隔:margin;最大间隔:Maximal margin classifier

间隔与支持向量:

 在样本空间中,划分超平面可通过如下线性方程来描述:w^Tx+b=0

其中w = (w1;w2....;wd)为法向量,决定了超平面的方向;b为位移项,决定了超平面与原点之间的距离。显然,划分超平面可被法向量wb确定下面我们将其记为(w,b),样本空间中任意点x到超平面(w,b)的距离可写为r=|w^Tx+b|/||w||

 

 

 拉格朗日乘子法

 

 L(x,λ)即拉格朗日函数,λk是拉格朗日乘子。拉格朗日函数对x求偏导的结果为0时,几位最优解

构造拉格朗日函数:

其中,λk是为等式约束引入的拉格朗日乘子,是为不等式约束引入的松弛变量,也叫做KKT乘子,注意KKT乘子是大于0的。这样就将有约束的优化问题转换为无约束的优化了,求导即可,求出极值点。

 注意:f(x),g(x)都是凸函数。

 对偶问题

 

 将上式分为两部分:1.可行解区域及内,原优化问题的约束条件都得到满足。因为,所以不管α怎么变化,必有,且限定了,则 最大值为0.综上,在可行解区域内:

 2.可行解区域外,此时原优化问题的约束条件为满足。若,则最大化后为。若,则最大化后也为。所以在可行解区域外:

 综合上面两个论域,f(x)在可行解区域内最小化,等于的最小化,而在可行解区域外,无极值。这样当我们尝试对其进行最小化时也就相当于原优化问题了。

 

 只有再KKT条件时,才有:d*=p*,此时,我们可以通过求解Dual问题来求解primal问题

SMO算法

重复直到收敛:选择下一步需要优化的(使用启发式的方式选择使得向最大值进发更快)

保持其它的值不变,仅仅通过改变来优化

 使用KKT条件来判断是否收敛;

 

 假设我们需要优化,根据约束条件,可以推导

 由于等式右边保持固定,可以使用常数代替,可以转化为

 

 

 核函数

 

 直接扩展到高维的问题: 增大量计算量;没有办法增加到无限维

计算量与数据量和每一条数据的维度正相关

核函数的充要条件:

Mercer定理-任何半正定对称函数都可作为核函数

 核函数的充要条件是K矩阵是半正定的。将K特征值分解,有经特征映射将属性值映射到特征空间,核函数k(x,z)对应于特征映射的核函数=

 常见的核函数:

多项式核(polynomial  Kernel)

 高斯核(RBF Kernel)

 余弦相似性核(Consine Sinilarity Kernel)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值