datax 操作pg,支持insert和update

PostgreSQL ONCONFLICT 更新语法在DataX中的实现与应用
本文详细介绍了如何在DataX中利用PostgreSQL的ONCONFLICT更新语法来实现数据的 Upsert 操作。通过修改`PostgresqlWriter.java`和`WriterUtil.java`,允许配置`writeMode`为`update(id,name)`,在PostgreSQL 9.5及以上版本中执行更新或插入操作。示例展示了配置JSON和运行日志,强调了低版本PG不支持ONCONFLICT的限制。

1.如果需要pg支持update,则需pg版本在9.5以上

可用select version()查看。

可熟悉语法:ON CONFLICT ,PostgreSQL的ON CONFLICT

关键词:如果不存在则插入,存在则更新

t_hdj_test3的联合主键是id,name;

INSERT INTO "warning_event"."t_hdj_test3" (id,name,sex) VALUES('1'::int4,'aaa'::varchar,'女'::varchar) ON CONFLICT  ( id ,name )  DO  UPDATE SET sex=excluded.sex

修改 PostgresqlWriter.java

删除限制:

 

修改WriterUtil.java

添加postgresql 数据插入类型转换:​​​​​​​

 

public static String getWriteTemplate(List<String> columnHolders, List<String> valueHolders, String writeMode, DataBaseType dataBaseType, boolean forceUseUpdate) {
        boolean isWriteModeLegal = writeMode.trim().toLowerCase().startsWith("insert")
                || writeMode.trim().toLowerCase().startsWith("replace")
                || writeMode.trim().toLowerCase().startsWith("update");

        if (!isWriteModeLegal) {
            throw DataXException.asDataXException(DBUtilErrorCode.ILLEGAL_VALUE,
                    String.format("您所配置的 writeMode:%s 错误. 因为DataX 目前仅支持replace,update 或 insert 方式. 请检查您的配置并作出修改.", writeMode));
        }
        // && writeMode.trim().toLowerCase().startsWith("replace")
        String writeDataSqlTemplate;
        if (forceUseUpdate ||
                ((dataBaseType == DataBaseType.MySql || dataBaseType == DataBaseType.Tddl) && writeMode.trim().toLowerCase().startsWith("update"))
                ) {
            //update只在mysql下使用

            writeDataSqlTemplate = new StringBuilder()
                    .append("INSERT INTO %s (").append(StringUtils.join(columnHolders, ","))
                    .append(") VALUES(").append(StringUtils.join(valueHolders, ","))
                    .append(")")
                    .append(onDuplicateKeyUpdateString(columnHolders))
                    .toString();
        } else {
            if (dataBaseType == DataBaseType.PostgreSQL) {

                        StringBuilder sb = new StringBuilder().append("INSERT INTO %s (")
                        .append(StringUtils.join(columnHolders, ","))
                        .append(") VALUES(").append(StringUtils.join(valueHolders, ","))
                        .append(")");
                        if(writeMode.trim().toLowerCase().startsWith("update")){
                            sb.append(onConFlictDoString(writeMode, columnHolders));
                        }
                writeDataSqlTemplate = sb.toString();
            } else {
                //这里是保护,如果其他错误的使用了update,需要更换为replace
                if (writeMode.trim().toLowerCase().startsWith("update")) {
                    writeMode = "replace";
                }
                writeDataSqlTemplate = new StringBuilder().append(writeMode)
                        .append(" INTO %s (").append(StringUtils.join(columnHolders, ","))
                        .append(") VALUES(").append(StringUtils.join(valueHolders, ","))
                        .append(")").toString();
            }

        }

        return writeDataSqlTemplate;
    }

增加onConFlictDoString方法:

public static String onConFlictDoString(String conflict, List<String> columnHolders) {
        conflict = conflict.replace("update", "");
        StringBuilder sb = new StringBuilder();
        sb.append(" ON CONFLICT ");
        sb.append(conflict);
        sb.append(" DO ");
        if (columnHolders == null || columnHolders.size() < 1) {
            sb.append("NOTHING");
            return sb.toString();
        }
        String[] conflictFields = conflict.replace("(","").replace(")","").replace(" ","").split(",");
        Set<String> conflictFieldsSet = Sets.newHashSet(conflictFields);
        sb.append(" UPDATE SET ");
        boolean first = true;
        for (String column : columnHolders) {
            if(conflictFieldsSet.contains(column)){
                continue;
            }
            if (!first) {
                sb.append(",");
            } else {
                first = false;
            }
            sb.append(column);
            sb.append("=excluded.");
            sb.append(column);
        }
        return sb.toString();
    }

效果Json

{

  "job": {

    "setting": {

        "speed": {

            "channel": 1

        }

    },

    "content": [

      {

        "reader": {

          "name":"postgresqlreader",
	  "parameter":{
		"username":"111",
		"password":"222",
		"splitPk":"",
		"connection":[
			{
				"querySql":["select id ,name,sex from warning_event.t_hdj_test2"],
				"jdbcUrl":[
					"jdbc:postgresql://333"
				]
			}
		]

	  }

        },

        "writer": {

          "name": "postgresqlwriter",

          "parameter": {
		"writeMode": "update (id,name)",
		"username":"111",
		"password":"222",
		"column":["id","name","sex"],
		"preSql":[
		    
		],
		"connection":[
		{ 
		    "table":["\"warning_event\".\"t_hdj_test3\""],
		    "jdbcUrl":"jdbc:postgresql://333"
		}
		]

          }

        }

      }

    ]

  }

 

}

Datax运行日志:

此错误是pg库版本在9.5以下,

生成sql如下:INSERT INTO "warning_event"."t_hdj_test3" (id,name,sex) VALUES('1'::int4,'aaa'::varchar,'女'::varchar) ON CONFLICT  ( id ,name )  DO  UPDATE SET sex=excluded.sex

 没有"writeMode": "update (id,name)", 则正常插入

<think>好的,我现在需要帮用户解决如何在DataX中配置PostgreSQL的导入任务,特别是涉及表关联聚合函数的场景。用户之前询问过关于PostgreSQL复杂CASE WHEN查询的优化,现在转向数据导入工具DataX的使用,可能是在数据迁移或ETL过程中需要处理复杂查询的结果。 首先,用户的需求明确:在DataX的配置中实现表关联聚合函数。根据引用[2],DataX是阿里开源的离线同步工具,支持多种数据源,包括PostgreSQL。但DataX本身主要用于数据迁移,并不直接执行SQL的复杂操作,通常建议在数据库端处理复杂逻辑,比如使用视图或预计算,然后再同步。不过,用户可能需要直接在DataX的SQL中写入关联聚合,这可能涉及到查询的优化正确配置。 接下来,我需要考虑DataX的Reader配置。PostgreSQL的Reader插件允许自定义SQL查询,这可能是实现表关联聚合的关键。用户需要编写包含JOIN聚合函数(如SUM、COUNT)的SQL语句,并在DataX的任务配置中正确设置。 然后,我需要确保SQL语法的正确性。例如,用户可能需要将两个表通过某个字段连接,然后对结果进行分组聚合。例如,关联orderscustomers表,按客户分组计算订单总金额。在DataX的SQL中,需要正确使用JOINGROUP BY,并确保聚合函数的使用符合PostgreSQL的语法。 此外,性能优化也是需要考虑的。引用[3]提到分布式SQL引擎的智能下推,虽然DataX不是分布式引擎,但可以借鉴将复杂查询下推到数据库执行的思想,减少数据传输量。因此,在DataX配置中,应该让PostgreSQL执行尽可能多的处理,比如在SQL中完成关联聚合,而不是在DataX端处理,这样效率更高。 还需要注意DataX的并发配置。如果数据量较大,合理设置channel参数可以提高同步速度。例如,根据引用[4]中提到的Flink CDC的性能优势,虽然DataX是离线工具,但通过调整并发数,也能优化执行效率。 可能的陷阱包括SQL语法错误、聚合字段别名问题,以及DataX对结果集的处理。例如,聚合后的字段如果没有别名,可能在DataX读取时出现问题。此外,确保查询的效率索引的使用,避免全表扫描,可以参考之前用户问题中的索引优化策略。 最后,需要给出一个具体的配置示例,展示如何编写包含JOIN聚合函数的SQL,并正确设置DataX的readerwriter。同时,提醒用户关于性能调优的要点,比如使用索引、分页查询避免内存溢出等。</think>以下是在DataX中实现PostgreSQL表关联与聚合函数的完整配置方案,结合最佳实践与性能优化建议: --- ### 一、基础配置示例(订单统计场景) ```json { "job": { "content": [{ "reader": { "name": "postgresqlreader", "parameter": { "username": "postgres", "password": "your_password", "connection": [{ "querySql": [ "SELECT c.customer_id,", " c.customer_name,", " SUM(o.order_amount) AS total_amount,", " COUNT(o.order_id) AS order_count", "FROM customers c", "JOIN orders o ON c.customer_id = o.customer_id", "WHERE o.order_date >= '2023-01-01'", "GROUP BY c.customer_id, c.customer_name" ], "jdbcUrl": ["jdbc:postgresql://host:5432/db"] }], "fetchSize": 1024 } }, "writer": { "name": "mysqlwriter", // 目标库类型 "parameter": { "writeMode": "insert", "column": ["customer_id","customer_name","total_amount","order_count"], "connection": [{ "jdbcUrl": "jdbc:mysql://target_host:3306/target_db", "table": ["customer_summary"] }] } } }], "setting": { "speed": { "channel": 4 // 根据服务器配置调整 } } } } ``` --- ### 二、关键优化点说明 #### 1. **SQL层优化** - **索引预配置**(引用[3]智能下推原则) 确保关联字段WHERE条件字段有索引: ```sql CREATE INDEX idx_orders_customer ON orders(customer_id); CREATE INDEX idx_orders_date ON orders(order_date); ``` - **分区表优化**(大数据量场景) 若orders表按日期分区,可结合分区剪枝: ```sql WHERE o.order_date BETWEEN '2023-01-01' AND '2023-06-30' ``` #### 2. **DataX配置优化** - **分页读取**(避免OOM) ```json "splitPk": "customer_id", // 配合channel数进行数据分片 "where": "" // 自动生成分片条件 ``` - **批量提交** ```json "writer": { "parameter": { "batchSize": 1024 // 根据内存调整 } } ``` --- ### 三、高级场景配置(多级聚合) ```json "querySql": [ "WITH region_sales AS (", " SELECT r.region_id,", " SUM(s.amount) AS region_total,", " AVG(s.quantity) AS avg_quantity", " FROM sales s", " JOIN stores st ON s.store_id = st.store_id", " JOIN regions r ON st.region_id = r.region_id", " GROUP BY r.region_id", ")", "SELECT c.country_name,", " COUNT(rs.region_id) AS active_regions,", " MAX(rs.region_total) AS top_region_sales", "FROM region_sales rs", "JOIN countries c ON rs.country_code = c.code", "GROUP BY c.country_name" ] ``` --- ### 四、常见问题解决 #### 1. **字段类型映射错误** - **现象**:聚合结果类型与目标表不匹配 - **方案**:在SQL中显式转换类型: ```sql CAST(COUNT(*) AS BIGINT) AS record_count ``` #### 2. **关联查询性能差** - **优化步骤**: 1. 使用`EXPLAIN ANALYZE`分析PostgreSQL执行计划[^1] 2. 检查是否触发Nested Loop Join(大数据量应使用Hash Join) 3. 调整`work_mem`参数: ```sql SET work_mem = '64MB'; -- 在查询前执行 ``` --- ### 五、相关工具对比 | 场景 | DataX适用性 | Flink CDC适用性(引用[4]) | |---------------------|-------------|--------------------------| | 全量历史数据迁移 | ★★★★★ | ★★☆☆☆ | | 增量聚合同步 | ★★☆☆☆ | ★★★★★ | | 复杂关联计算 | ★★★☆☆ | ★★★★☆ | ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值