超级人工智能争霸赛:Dylan Patel断言“OpenAI会赢”,揭秘硅谷AI乱局

在这里插入图片描述

半导体与AI领域头号“爆料王”——SemiAnalysis创始人兼CEO Dylan Patel,近日在与AI大V Matthew Berman的长达一小时访谈中,掀开了GPT-4.5惨败、Meta仓促抄袭DeepSeek翻车、苹果AI战略迷失等一连串猛料。他不仅矢口否认Meta的几款重磅模型能登场,还铁口直断:OpenAI将第一个冲破ASI(超人工智能)大门!


谁会第一个造出ASI?OpenAI!

当主持人问到“谁能率先实现超人工智能(ASI)”时,Patel毫不犹豫地回答:“OpenAI!”
这一回答让现场一片哗然:在他看来,OpenAI不仅掌握了从预训练到推理、多模态能力的每一次“关键突破”,而且在资源调配、技术路线抉择上都走在最前列。


Meta的自毁式「抄袭」

DeepSeek式MoE翻车

  • Behemoth、Maverick、Scout:Patel几乎一口否定了Meta未来所有大模型发布计划,直言“永远也看不到它们上线”。
  • 匆忙借鉴DeepSeek MoE架构:Meta竟然连最基本的Token路由都没调通,导致大批“专家模块”闲置,训练几乎形同虚设。

“即便拥有顶级人才和算力,没有一个能够做出果断判断的技术领袖,研究团队就会在无用的项目上一头扎进去。”——Patel痛批。


小扎的疯狂抢人战

Mark Zuckerberg近期以千万美金年薪从OpenAI“抢”走大咖,又大手笔收购Scale AI(实为买人),结果却遭遇谷歌等巨头纷纷切断合同。
Patel指出:

  • 这波天价挖角更多是对ASI恐慌症的直接反应;
  • 完全靠砸钱买人,很难建立一条清晰、有效的研发链条;
  • 有传闻称Meta甚至在酝酿用上亿美元全年薪“买断”整个团队。

GPT-4.5为何跌落神坛?

Patel一语道破:

“GPT-4.5太大、太慢、太贵,根本没什么实用价值。”

核心问题:

  1. 过度参数化——模型规模远超最佳Scaling Law推荐比例,导致“一味扩规模却不换思路”。
  2. 训练Bug频发——一个隐藏在PyTorch底层的小错误,让团队反复重启、耗费数月。
  3. 数据量不足——与Chinchilla提出的“参数与Token最佳比例”相背,用了过多参数却没配足够训练语料。
  4. 推理新发现被忽视——当“Strawberry”团队率先证实轻量推理的高效潜力时,OpenAI已押注于体量庞大的Orion。

OpenAI vs. 微软:蜜月终结

曾经“你给力Azure,我拿利润分成”的CP组合,如今走向分离:

  • 微软握着大部分利润权和IP,且在AGI到来前拿走全部技术;
  • OpenAI却渴望无限烧钱、追求“无盈利五年计划”,开始转投Oracle、CoreWeave等云厂商;
  • 双方都小心防备,一旦任一方迈出破局一步,合作平衡即将崩塌。

苹果AI:慢半拍的“佛系”巨头

Patel毫不留情地点评苹果:

  • 保守收购、疏离开源,难以吸引一线AI人才;
  • 端侧AI的“私密”主张,受限于手机芯片算力,难承担复杂大模型推理;
  • 表面吹“本地优先”,实则在背后建云端数据中心、挖TPU大神自研加速器。

“苹果押的其实是另一场云大战,只是换了个马甲。”——Patel总结。


亚军与黑马:Anthropic、谷歌/Meta/xAI

除了OpenAI,Patel还提到:

  • Anthropic:技术扎实、团队深厚,但过于保守,安全策略把发布节奏搞得小心翼翼;
  • 谷歌 vs. Meta vs. xAI:谷歌底子深厚,xAI有马斯克背书,Meta靠现金砸人,这三家在ASI竞速中各有胜算。

Patel的终极预言

在这场硅谷AI大乱斗中,真正的胜负,不止是算力与算子,还包括:

  • 产品化思路:谁能把技术落地给几十亿用户?
  • 战略眼光:谁能运筹帷幄、避开瓶颈?
  • 组织执行力:有无一把手能靠“品味”决断方向。

Dylan Patel给出的简短总结:

“超人工智能的时代,不再是‘能不能’问答,而是‘谁先’,而OpenAI最有牌面。”


AI好书推荐

AI日新月异,再不学来不及了。但是万丈高楼拔地起,离不开良好的基础。您是否有兴趣了解人工智能的原理和实践? 不要再观望! 我们关于 AI 原则和实践的书是任何想要深入了解 AI 世界的人的完美资源。 由该领域的领先专家撰写,这本综合指南涵盖了从机器学习的基础知识到构建智能系统的高级技术的所有内容。 无论您是初学者还是经验丰富的 AI 从业者,本书都能满足您的需求。 那为什么还要等呢?

人工智能原理与实践 全面涵盖人工智能和数据科学各个重要体系经典

北大出版社,人工智能原理与实践 人工智能和数据科学从入门到精通 详解机器学习深度学习算法原理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值