- 博客(195)
- 资源 (11)
- 收藏
- 关注
原创 D007 django+neo4j三维知识图谱医疗问答系统|3D+2D双知识图谱可视化+问答+寻医问药系统
本文介绍了一个基于Vue+Django的医疗疾病知识图谱问答系统。系统采用neo4j图数据库构建医疗知识图谱,包含疾病、药物及其关联关系。主要功能包括:知识图谱2D/3D可视化展示、基于LTP技术的智能问答、用户管理等。系统通过实体识别和语义分析处理用户查询,返回疾病相关治疗信息。文章展示了系统架构、功能模块、界面效果及核心代码实现流程,并提供了B站视频和CSDN联系方式供进一步了解。
2025-09-12 11:02:18
768
原创 J002 Vue+SpringBoot电影推荐可视化系统|双协同过滤推荐算法评论情感分析spark数据分析|配套文档1.34万字
本文介绍了一个基于Vue.js和Spring Boot的智能电影推荐系统。系统采用B/S架构,集成协同过滤算法(UserCF、ItemCF)和LSTM情感分析模型,为用户提供个性化推荐。功能包括:登录注册、电影推荐、可视化分析(评论/出品/地图)、词云分析、数据查询等。管理系统支持用户/电影/评论管理,数据大屏实现多维数据可视化展示。系统采用MySQL存储数据,通过余弦相似度计算用户兴趣相似度,支持实时更新推荐结果。配套文档1.34万字,包含完整项目目录和代码实例(如基于用户的协同过滤算法实现)。
2025-09-12 08:25:26
697
原创 windows安装DGL报错解决
本文记录了在torch2.4.x+cuda124环境下安装DGL后出现报错问题的解决过程。作者发现系统缺少graphbolt_pytorch_2.4.0.dll文件,尝试官网方案未果后,通过降级安装torch2.3.0+cuda121版本成功解决问题。测试代码验证环境正常后,作者还实现了一个基于GNN的电影推荐模型并成功运行。解决方案表明当前DGL对torch2.4.x版本可能存在兼容性问题,建议使用较稳定的torch2.3.0版本组合。
2025-09-11 14:05:07
106
原创 利用 httpie 测试后端服务
本文介绍了使用httpie工具测试FastAPI接口的步骤。首先通过pip安装httpie,然后演示了如何发送GET请求获取用户信息(示例:http get :8000/users)。文章还展示了后端/users接口的实现代码,该接口支持分页查询、关键词搜索和JSON格式过滤条件,使用FastAPI框架开发,包含参数解析、查询构建和异常处理等功能。
2025-09-11 14:04:33
127
原创 R02 基于vue+neo4j的中医中药方剂推荐+知识图谱可视化系统(中药分布地图、知识图谱大屏)
摘要:该系统构建了一个基于Vue+SpringBoot+Neo4j的中医药知识图谱平台,采用"3+1+2"架构(三前端一后端双数据库),集成推荐算法、情感分析和可视化技术。主要功能包括:个性化药材推荐(UserCF/ItemCF算法)、知识图谱查询(支持力导向/环形布局切换)、方剂药材关联分析、产地地图可视化、用户评论情感分析(LSTM模型)以及资讯管理。系统通过Scrapy爬取数据,结合Neo4j构建中医药关系网络,提供网站端、管理端和大屏端三套界面,其中大屏端采用Echarts实现多
2025-09-10 08:46:13
1194
原创 F009 vue+flask 音乐推荐评论情感分析和可视化系统+带爬虫前后端分离系统
本文介绍了一个基于Vue+Flask的音乐推荐系统,具备LSTM情感分析和协同过滤推荐功能。系统主要功能包括:音乐数据爬取与可视化(含多种图表展示)、交互式协同过滤推荐(UserCF和ItemCF算法)、歌词/乐评词云生成、LSTM情感分析(支持三分类)、用户登录注册及个人设置等。文章详细展示了系统界面和功能模块,并提供了协同过滤算法的Python实现代码示例。结尾附有CSDN官方提供的学长联系方式及B站视频链接。
2025-09-10 08:44:30
1077
原创 【麦麦大数据】vue+django项目说明
这篇文章介绍了一个基于Vue+Flask的高考预测可视化系统。系统包含首页展示、数据卡片、可视化分析、分数线预测和用户管理五大功能模块,采用B/S架构,前端使用Vue.js生态组件,后端通过Flask处理业务逻辑,并连接MySQL数据库。文章还提供了系统架构图、功能模块图和部分代码实例,展示了系统的核心功能和技术实现方案。
2025-09-09 08:07:02
206
原创 【麦麦大数据】Vue+FastAPI项目说明
本文介绍了一个基于Vue+Flask的高考预测可视化系统,具备数据展示、预测和用户管理功能。系统采用B/S架构,前端使用Vue生态组件,后端采用Flask处理业务逻辑,通过API交互实现数据可视化、分数线预测等功能,并包含独立爬虫模块获取数据支撑。
2025-09-09 08:05:42
307
原创 【麦麦大数据】vue+flask项目说明
本文介绍了一个基于Vue+Flask的高考预测可视化系统,该系统包含首页概览、数据卡片、可视化图表、分数线预测和用户管理五大功能模块。系统采用B/S架构,前端使用Vue.js及相关组件,后端采用Flask框架,通过API交互实现数据可视化展示和智能预测。系统还配备了独立的爬虫模块用于数据采集,并通过MySQL数据库进行存储。文章详细阐述了系统架构、功能设计,并展示了部分功能界面和代码实现。
2025-09-08 10:07:44
391
原创 F030vue+flask求职薪资预测职位推荐知识图谱机器学习系统neo4j数据库
本文介绍了一款基于Vue+Flask的智能求职系统(F030),该系统集成了知识图谱可视化、AI问答和机器学习预测等功能。系统采用前后端分离架构,前端使用Vue.js,后端采用Flask框架,数据库使用MySQL和Neo4j。主要功能包括:基于协同过滤算法的职位推荐、薪资预测(决策树和随机森林模型)、知识图谱可视化、实时AI求职问答、数据分析和词云展示等。系统还提供了完善的用户管理模块,包括登录注册、个人信息修改和实名认证等功能。通过多维度数据分析和智能推荐,帮助求职者更高效地获取职位信息。
2025-09-08 10:07:16
886
原创 【麦麦大数据】vue+springboot项目说明
本文介绍了一个基于Vue+Spring Boot的音乐推荐可视化系统。该系统采用前后端分离架构,前端使用Vue.js实现用户界面和可视化图表,后端采用Spring Boot实现业务逻辑和数据处理。系统核心功能包括基于UserCF和ItemCF算法的音乐推荐、用户管理、歌曲/专辑/歌手管理模块,以及丰富的可视化分析功能(专辑分析、歌曲分析、词云分析等)。此外还包含数据大屏功能,通过多维度的图表展示运营数据。系统采用MySQL数据库存储数据,MyBatis-Plus简化ORM操作,具有模块化、可扩展的特点,适合
2025-09-01 21:22:01
559
原创 J001 Vue+SpringBoot音乐推荐可视化系统|双协同过滤推荐算法spark数据分析|配套文档1.1万字
本文介绍了一个基于Vue+Spring Boot的音乐推荐可视化系统。系统采用前后端分离架构,前端使用Vue.js实现用户界面,后端基于Spring Boot处理业务逻辑,数据库采用MySQL。核心功能包括:1)个性化音乐推荐(基于UserCF和ItemCF协同过滤算法);2)数据可视化分析(包括专辑、歌曲、用户行为等数据的图表展示);3)系统管理后台(用户、歌曲、评论等管理功能);4)数据大屏(多维度运营数据可视化)。系统还支持登录注册、词云分析、密码修改等功能,配套1.1万字文档和完整源码。项目采用流行
2025-09-01 21:21:25
1194
原创 F015 neo4j知识图谱 Vue+flask 中药中医方剂大数据可视化系统【附1.2万字文档】
本文介绍了一个基于Vue+Flask+Neo4j的中医药知识图谱可视化系统。项目整合了1200+经典方剂和580+中药材数据,通过双数据库(MySQL+Neo4j)存储,实现了方剂-药材-功效-症候的多维关系建模。系统核心功能包括:药材数据爬取、方剂数据导入、知识图谱可视化(采用d3.js力导向图和Echarts两种方式)、关键词分析和词云展示。项目解决了中医药领域数据孤岛和知识关联薄弱的问题,为临床用药分析、方剂配伍研究提供了数字化平台。技术架构包含Vue前端、Flask后端,实现了模糊搜索、数据可视化大
2025-08-30 13:46:15
1595
原创 vue+Django 双推荐算法旅游大数据可视化系统Echarts mysql数据库 带爬虫
摘要 本系统是一个基于Vue+Django的旅游大数据可视化平台,采用双推荐算法(UserCF+ItemCF)实现景点个性化推荐。系统功能包括:网络爬虫采集景区数据、4K动态登录界面、Echarts多维度数据可视化、百度热力图展示景区热度、词云分析景区描述、支付宝沙箱支付集成、OCR身份证识别等。技术栈包含Django后端、Vue前端、MySQL数据库,并采用协同过滤算法实现推荐功能。系统特色在于实现了响应式设计、主题配置化、移动端适配,以及完整的旅游数据分析解决方案。
2025-08-30 11:56:27
1015
原创 F018 Vue+Flask构建的高考预测可视化系统|带预测算法机器学习
本文介绍了一个基于Vue+Flask的高考预测可视化系统。系统主要功能包括:首页展示、数据卡片(支持高校位置查看和点赞)、可视化图表分析、分数线预测(采用SVM机器学习模型)以及用户管理模块。系统采用B/S架构,前端使用Vue.js框架,后端通过Flask实现,数据存储在MySQL中。文章重点展示了分数线预测功能,详细介绍了SVR模型的实现流程,包括数据准备、标准化处理、网格搜索优化参数以及预测评估。最后提供了预测2023年高考分数线的代码实例,展示了该系统的核心预测能力。
2025-08-29 13:53:04
1002
原创 F013 vue+flask租房可视化大数据可视化系统
本文介绍了一个基于Vue+Flask的租房大数据可视化项目。项目采用Vue.js和Echarts构建前端,Flask作为后端框架,MySQL存储数据。核心功能包括用户登录管理、11种Echarts图表可视化分析(柱状图、折线图、饼图等)、动态交互效果以及词云分析等。系统分为数据大屏和可视化分析两个前端界面,通过多维度图表展示链家平台爬取的数万条区域租房数据,提供直观的数据分析和交互体验。项目代码采用响应式设计,支持城市区域筛选和价格满意度反馈等功能。
2025-08-29 11:59:56
526
原创 百度地图+vue+flask+爬虫 推荐算法旅游大数据可视化系统Echarts mysql数据库 带沙箱支付+图像识别技术
这是一个基于Vue+Flask的旅游大数据可视化系统,集成了爬虫、推荐算法和多种技术功能。系统通过爬虫获取景区数据存储到MySQL,采用UserCF和ItemCF协同过滤算法进行景点推荐。前端使用Vue+Echarts实现数据可视化展示,包括热力图、词云、散点图等多种图表。特色功能包括百度地图API集成、百度AI身份证识别、支付宝沙箱支付等。系统采用前后端分离架构,后端使用Flask框架,提供景区搜索、数据分析、用户管理等功能模块,支持移动端自适应。开发者具有15年全栈经验,项目展示了旅游大数据处理与可视化
2025-08-28 10:48:08
1303
原创 F010 Vue+Flask豆瓣图书推荐大数据可视化平台系统源码
豆瓣图书推荐大数据可视化系统 本系统基于Vue+Flask实现,主要功能包括: 数据采集:使用Scrapy爬取豆瓣图书数据,通过Pandas/Numpy进行数据清洗 推荐算法:采用UserCF和ItemCF协同过滤算法实现个性化图书推荐 可视化分析:集成Echarts展示多种图表(词云、折线图、散点图等) 特色功能:自适应移动端、阿里云短信、百度身份证识别等API集成 系统亮点:海量数据爬取、多种分析图表、完全响应式设计、大数据风格UI。适用于图书推荐、数据分析等场景。
2025-08-28 09:29:03
1074
原创 F008 vue+flask 音乐推荐评论和可视化系统+带爬虫前后端分离系统
基于Vue+Flask实现的音乐推荐和可视化系统,采用前后端分离架构,集成协同过滤推荐算法和多种数据可视化功能。系统主要功能包括:音乐数据爬取(歌曲、歌手、歌词、评论)、交互式协同过滤推荐(UserCF和ItemCF算法)、8种数据可视化图表(折线图/柱状图/饼图等)、歌词词云生成、用户管理等。前端采用Vue实现动态交互界面,后端使用Flask构建RESTful API,通过用户评分行为实现个性化推荐闭环。系统同时支持模糊搜索、个人设置等功能,为音乐爱好者提供数据驱动的智能推荐服务。
2025-08-27 13:45:49
916
原创 F006 vue+flask python 垃圾分类可视化系统+爬虫
本文介绍了一个垃圾分类查询系统,包含数据爬取、搜索功能和可视化分析。系统从指定网站爬取垃圾数据,包括名称、分类和图片等信息,并存储到MySQL数据库。核心功能包括:1)垃圾分类搜索(如葡萄、杀虫剂等);2)搜索结果展示;3)数据可视化分析(分类占比等)。文章提供了系统流程图、界面截图和Python爬虫代码(使用requests和BeautifulSoup库),包含数据库连接、随机UA设置等实现细节。系统支持将搜索结果存入数据库,并通过CSDN提供的联系方式获取更多帮助。
2025-08-26 08:48:53
675
原创 基于LightRAG的新生校园问答系统、校园百事通问答系统(初步体验)
本文介绍了从零开始搭建基于LightRAG的新生校园问答系统的过程。首先需要从GitHub下载港大开源的LightRAG项目(一个轻量级的GraphRAG实现),并创建项目工程。准备PDF文档作为RAG数据源后,编写索引脚本index.py进行配置,包括设置日志系统、定义LLM模型函数和嵌入函数。脚本中需要配置OpenAI API参数和工作目录,最终通过LightRAG类初始化实现问答系统的索引构建。整个过程突出了LightRAG的简单快速特性,适合构建校园百事通类问答系统。
2025-08-26 08:33:36
524
原创 D030知识图谱科研文献论文推荐系统vue+django+Neo4j的知识图谱|本文相似度推荐|协同过滤
本文介绍了一个基于Vue+Django+Neo4j+MySQL的科研文献推荐系统,采用前后端分离架构实现知识图谱构建与可视化分析。系统通过爬虫获取知网文献数据,使用Neo4j存储文献、作者、刊物等实体关系,并实现协同过滤和文本相似度两种推荐算法。主要功能包括文献检索、知识图谱可视化、个性化推荐、收藏评分、数据大屏分析等,同时提供用户管理、权限控制等后台功能。系统通过Echarts实现多种数据可视化展示,为科研人员提供智能化的文献检索和分析服务。
2025-08-25 17:47:35
1130
原创 LightRAG的简单构建测试
本文介绍了如何从零开始构建一个基于LightRAG的红楼梦问答项目。首先在GitHub获取LightRAG源码并配置环境,然后通过测试脚本处理文本数据并构建索引。文章展示了不同检索模式(local/global/hybrid/naive)的查询效果,并提供了处理PDF/DOCX格式文件的方法。同时分析了图谱抽取效果,指出当前版本在节点关系抽取方面的不足。最后提到项目使用了本地部署的大模型和第三方嵌入模型,并说明新版LightRAG已有改进,后续将重新测试。全文提供了完整的代码实现和效果展示。
2025-08-25 08:14:30
818
原创 求职推荐大数据可视化平台招聘系统 Vue+Flask python爬虫 前后端分离
📝 摘要: 本项目基于Vue+Flask开发了一个求职招聘大数据可视化平台,采用爬虫技术获取12万条智联招聘数据并存储到MySQL。系统亮点包括:使用UserCF和ItemCF协同过滤算法智能推荐职位;集成Echarts实现数据大屏、地图分析、薪酬散点图等丰富可视化;通过百度AI实现OCR身份证识别;采用响应式前端设计,支持移动端适配。开发涉及Python爬虫、Flask接口开发、Vue前端展示等技术栈,构建了完整的"爬虫→数据库→后端→前端"一体化系统。
2025-08-23 14:26:18
424
原创 从零开始构建GraphRAG红楼梦知识图谱问答项目(踩坑篇)
本文总结了构建基于GraphRAG的红楼梦项目时遇到的三个主要问题及解决方案:1) JSON解析错误,通过添加预处理方法解决非标准JSON格式问题;2) 索引构建错误,修正提示词文件格式;3) KeyError标题错误,建议更换OpenAI模型或测试其他兼容模型。文章还提供了CSDN官方学长的联系方式,并欢迎关注B站获取更多教程。
2025-08-23 10:14:39
319
原创 vue+flask天气预测可视化系统大数据(浅色版)+机器学习+管理端+爬虫+超酷界面+顶级可视化水平
本文介绍了一个基于Vue+Flask的全国天气预测可视化系统,具备15年开发经验的全栈工程师开发。系统采用前后端分离架构,包含用户前端、管理前端、Flask后端和独立爬虫模块。主要功能包括:1)基于scikit-learn的天气回归预测算法;2)细化到市级的高精度全国天气可视化地图;3)自动更新的超级爬虫数据源;4)多维度城市天气分析功能;5)美观的管理端数据维护界面。系统通过机器学习预测、实时数据采集和交互式可视化技术,为用户提供精准的天气信息和友好的使用体验。
2025-08-22 16:16:13
905
原创 vue+django大学生智能客服问答系统
本文介绍了一个基于BERT模型的智能问答系统,专为高校迎新场景设计。系统采用Vue+Django+MySQL架构,包含用户和管理员双角色功能模块。用户端提供基于BERT的智能问答、会话记录管理及反馈建议功能;管理员端可进行用户管理、问题库维护、反馈处理及公告发布等操作。该系统有效解决了迎新季咨询高峰压力,通过语义理解技术实现24小时即时响应,显著提升了新生服务体验。
2025-08-22 13:27:59
372
原创 从零开始构建GraphRAG红楼梦知识图谱问答项目(三)
本文介绍了如何基于GraphRAG技术构建红楼梦知识问答系统。内容包括:1)搭建FastAPI后端服务,配置GraphRAG相关导入和参数;2)实现全局/本地搜索接口,支持流式响应;3)提供测试脚本验证问答效果。文章展示了完整的代码实现,包括模型配置、API接口开发及测试方法,并附有运行效果截图。该系统能够回答关于红楼梦人物关系、主题分析等问题。
2025-08-21 11:01:49
304
原创 从零开始构建GraphRAG红楼梦知识图谱问答项目(二)
上节我们已经完成了GraphRAG红楼梦知识图谱问答的初步工作,最后也可以通过GraphRAG提供的工具进行问题,这一节不着急继续往后面做,而是对上节的一些细节进行进一步的说明。
2025-08-21 09:06:45
387
原创 从零开始构建GraphRAG红楼梦知识图谱问答项目(一)
本文介绍了一个基于GraphRAG的红楼梦知识图谱问答系统构建项目。项目采用Python 3.12环境,使用Qwen3-32B和BAAI/bge-m3模型。文章对比了传统RAG与GraphRAG的差异,详细说明了环境搭建步骤,包括创建虚拟环境、安装依赖、配置文件和数据集准备。重点介绍了GraphRAG的初始化流程和配置文件修改方法,为构建红楼梦知识图谱问答系统提供了完整的技术方案和实施路径。最后提供了CSDN官方学长的联系方式供进一步交流。
2025-08-20 15:16:17
1210
原创 MacOS安装大模型统一接口服务One-Api
One-API是一个开源项目,提供统一接口访问OpenAI API服务。文章介绍了其关键功能:统一接口、简化认证、增强功能等。详细讲解了下载(v0.6.10版本)、启动步骤(包括MacOS权限设置)和配置方法。演示了如何添加硅基流动渠道、测试连接、创建API令牌,并最终通过CherryStudio成功测试使用。最后展示了One-API的计费信息界面,验证了服务的正常运行。该工具简化了AI功能集成,使开发者能更便捷地调用大模型服务。
2025-08-20 09:10:38
277
原创 F003疫情传染病数据可视化vue+flask+mysql
Vue+Flask实现新冠疫情可视化大屏 本项目采用前后端分离架构,前端使用Vue+ElementUI+ECharts实现数据可视化展示,后端基于Flask框架开发。系统主要功能包括: 数据采集:通过爬虫获取腾讯新闻API的疫情数据并存储到MySQL 可视化分析:使用ECharts实现了中国疫情地图、柱状图、折线图等多种图表 技术栈:WebStorm/PyCharm开发环境,整合了pymysql、requests、json等关键技术 项目亮点:响应式设计的大屏展示界面,支持多种图表动态展示疫情数据变化趋势。
2025-08-19 10:29:50
1085
原创 vue+django 最强传染病管理系统源码|健康打卡|返校|请假|指挥系统|传染病地图|mysql|python
摘要 该系统是基于Vue+Django开发的疫情指挥管理系统,主要用于校园疫情防控。主要功能包括健康打卡(整合百度地图API自动定位)、疫情数据可视化、请假审批流程(邮件通知)以及场所码管理。系统采用Python 3.9+Django+MySQL技术栈,支持PC端和移动端,包含学生、辅导员、教职工和管理员四种角色,实现健康状态上报、离校/返校审批、传染病地图展示等功能。数据权限严格分级,确保信息安全性。系统通过ElementUI实现美观的界面设计,并采用echarts进行疫情数据可视化展示。
2025-08-19 09:32:10
369
原创 D034 vue+django 中医知识图谱推荐问答系统 【 推荐算法+知识图谱+检索式中医问答 】vue+python前后端分离架构,neo4j图数据,界面美观大
摘要 本文介绍了一个基于知识图谱的中医推荐问答系统,采用Vue+Django+Neo4j+MySQL技术架构。系统核心功能包括:1)知识图谱可视化(D3.js实现);2)协同过滤推荐算法;3)药材/方剂模糊搜索;4)数据可视化分析(ECharts);5)LTP模型+知识图谱的检索式问答。项目特色在于整合了传统中医知识图谱与推荐算法,提供多维度数据分析和直观可视化展示。系统数据来源于爬取的中药网站和人工整理的方剂资料,实现了药材属性查询、方剂推荐、主题词分析等功能,为中医知识学习与研究提供了智能化工具。
2025-08-18 17:52:14
1404
原创 Vue+Flask 电影协同推荐可视化平台 前后端分离 大数据分析
本文介绍了一个基于Vue+Flask的电影大数据推荐与可视化系统。该系统采用协同过滤算法(usercf+itemcf)实现电影推荐,通过爬虫获取豆瓣Top250数据并存入MySQL。前端使用Echarts实现多种可视化图表,包括词云、散点图、时间轴等交互式分析。系统支持用户认证、电影搜索和自适应移动端展示,采用前后端分离架构(爬虫→MySQL→Flask→Vue)。开发环境为Python3.8+Vue2.x,使用Flask、SQLAlchemy等技术栈。项目亮点包括专业的酷黑主题设计、丰富的可视化图表和完整
2025-08-18 11:36:13
813
原创 Vue+Flask旅游数据可视化大屏系统 前后端分离 大数据分析
本文介绍了一个基于Vue+Flask的旅游数据可视化大屏系统。系统采用前后端分离架构,前端使用Vue+Echarts实现数据可视化展示,支持黑白主题切换;后端采用Flask框架,数据存储在MySQL数据库。系统功能包括爬虫数据抓取(去哪儿网景点数据)、多种图表展示(地图、柱状图、饼图等)以及百度热力图实现。关键技术栈涵盖Vue、Echarts、BaiduMap、Flask、SQLAlchemy等。该系统为旅游行业提供高效的数据分析和决策支持,帮助用户掌握市场动态和景点销售趋势。
2025-08-16 10:03:39
833
原创 F004 新闻可视化系统爬虫更新数据+ flask + mysql架构
摘要 新闻可视化系统采用Flask+MySQL架构,实现观察者网新闻的自动化抓取、分析与可视化展示。系统包含四大核心模块:1)基于Requests+XPath的定向爬虫引擎;2)使用jieba分词和TF-IDF算法的文本处理流水线;3)MySQL关系型数据库管理结构化数据;4)交互式可视化中心,集成Echarts图表和动态词云生成功能。关键技术包括增量更新、全文检索和情感分析,为时事研究提供多维度数据支持。系统支持新闻列表展示、关键词搜索和高频词可视化,实现从数据采集到智能分析的全流程处理。
2025-08-16 10:02:58
270
原创 vue+flask天气预测可视化系统大数据+机器学习+管理端+爬虫+超酷界面+顶级可视化水平
本文介绍了一个基于Vue+Flask的天气预测可视化系统,采用前后端分离架构,包含用户前端、管理前端、后端服务和数据爬虫四大模块。系统特点包括:1)运用scikit-learn回归算法实现精准天气预测;2)全国天气地图可视化至市级;3)自主研发超级爬虫实时更新数据;4)支持多维度城市天气分析;5)配备美观的管理后台。系统采用主流技术栈(Vue/ECharts/Flask),通过机器学习、数据爬取和可视化技术,构建了一个功能全面、交互友好的天气分析平台,满足用户查询和管理需求。
2025-08-15 14:08:02
793
原创 vue+Django海产品推荐与价格预测系统、双推荐+三种价格预测对比+知识图谱
本文介绍了一个基于Vue+Flask的海产品推荐与价格预测系统。系统采用双数据库架构(MySQL+Neo4j),实现三大核心功能:1)基于用户和物品的双重推荐算法;2)线性回归、多项式回归和K临近三种价格预测算法的可视化对比;3)知识图谱展示海产品关联信息。系统前端使用Vue.js和Vuetify构建响应式界面,后端采用Flask框架,通过爬虫技术实时更新海产品价格数据。该系统为渔业从业者提供了一个集价格预测、产品推荐和信息可视化于一体的智能化服务平台。
2025-08-15 08:57:30
576
30多种海产品的价格数据,包含2023-2024年的,可以用作机器学习预测价格,或者做推荐系统
2025-08-12
2025年求职数据SQL文件,适合MYSQL数据库,数据8万多条,含有北京、上海等多个城市的职位、学历、薪资、公司类型等多个数据,可以进行机器学习、工资预测、推荐等处理
2025-08-12
python 中医养生问答系统,后端是python开发,前端是html,集成了基于知识图谱的问答+大模型问答功能
2025-06-17
基于深度学习+python的入侵检测
2025-06-17
深圳道路交通数据集,可以用于机器学习的项目的开发,数据来源于深圳市政府开放平台,都是深圳市各个区的道路信息
2024-11-12
安卓课程表程序+as开发+期末考核.docx+演示视频
2024-08-16
01安卓图书管理系统+源码+APK+数据库+期末作品设计报告册+应用截图+功能讲解视频
2024-08-16
02 as备忘录程序+源码+APK+数据库+移动终端期末大作业项目试验+备忘录大作业2024+JIE图
2024-08-16
从0开始搭建vue + flask 旅游景点数据分析系统实战教程对应的源码
2024-08-15
从0开始搭建vue + flask 旅游景点数据分析系统 【数据库SQL文件】
2024-08-14
安卓图书管理程序、带Java服务端和MYSQL数据库
2023-12-25
安卓图书管理APP程序源码+APK+自己写的报告+数据设计文档
2023-03-07
基于 Spark ML Lib 做的垃圾邮件的分类毕业设计完整源码
2023-03-07
安卓订餐源代码,基于android studio4.0 以上开发
2022-05-28
OpenGL 在 MFC中显示 例子
2012-12-21
VTK_The Visualization Toolkit An Object Oriented Approach to 3D Graphics(3)
2012-01-15
VTK_The Visualization Toolkit An Object Oriented Approach to 3D Graphics(2)
2012-01-15
VTK_The Visualization Toolkit An Object Oriented Approach to 3D Graphics(1)
2012-01-15
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人