vue+Django 双推荐算法旅游大数据可视化系统Echarts mysql数据库 带爬虫

D004A vue+Django 双推荐算法旅游大数据可视化系统Echarts mysql数据库 带爬虫

📚编号:D004 A

文章结尾部分有CSDN官方提供的学长 联系方式名片
博主开发经验15年,全栈工程师,专业搞定大模型、知识图谱、算法和可视化项目和比赛

视频介绍

vue+django旅游景点推荐算法可视化系统|百度热力地图|短信修改密码|阿里沙箱支付|OCR识别|大数据爬虫 | 数据大屏

👉 👈

1 系统功能

  • 爬虫:爬取热门景区评分等信息,存储到mysql数据库;
  • 注册与登录 : 4K美景登录注册页面;
  • 推荐:两种协同过滤算法,卡片式展示景区信息、点击后可以查看景区位置;
  • 景区库: 响应式模糊搜索景区(新增debounce函数优化体验);
  • 数据分析: 多种echarts图形分析数据;
  • 词云: 对爬取的景区介绍做了词云;
  • 热力图:对接百度地图通过热力图的方式展区景区的热度(销量)
  • 评分分析: 显示评分与车价格的散点图;
  • 设置:修改用户信息、修改密码;

2 系统亮点 ⭐

  • 实现的分析图:数据大屏、景区热力图、景区分布地图、景区交互地图、词云、多种折线图、饼图、环图等;
  • 景区地图展示:可以直接在百度地图中给出景区位置;
  • 推荐算法: 两种协同过滤推荐算法使用。 【User Based & Item Based】;
  • 实名认证功能:通过使用百度AI-ORC识别身份证实现 【python实现】;
  • 充值功能:完美集成支付宝沙箱支付;
  • 自适应移动端;
  • 界面主题可修改,配置化批量修改配色;

3 架构功能图

3.1 功能图

在这里插入图片描述

3.2 架构图

在这里插入图片描述

4 功能介绍

4.1 登录 (动态效果背景)

在这里插入图片描述

4.2 推荐算法

主页展示景点卡片 【展示图片、名称等信息】
基于usercf+itemcf 双协同过滤推荐算法的景点推荐
在这里插入图片描述
查看地图:景点卡片可以点击查看具体的位置,对接百度地图方式![
在这里插入图片描述
景点库可以进行模糊搜索
在这里插入图片描述

4.3 数据可视化

可视化大屏、 景点热力图、 下方是可以滚动的柱状图
在这里插入图片描述
在这里插入图片描述
地图分析(分布热力图)
在这里插入图片描述
词云分析
在这里插入图片描述

4.4 个人设置

在这里插入图片描述
在这里插入图片描述

4.5 爬虫

在这里插入图片描述

5 开发环境和关键技术

  • 服务端技术:Django、百度地图API、SQLAlchemy、MarshMallow、Blueprint 等
  • 前端技术:Vue 、Echarts 、Axios、Vuex、WordCloud 等
  • 爬虫技术: requests 等
  • 数据库:MySQL
  • 开发语言: Python 3.8 Vue 2.x
  • 集成开发环境: PyCharm-2025 WebStorm-2025 Windows-11 Node-16

6 推荐算法

算法介绍:
该协同过滤推荐算法基于用户相似性为中国旅游景点提供个性化推荐。首先构建用户-景点评分矩阵,使用余弦相似度计算用户间的偏好相似性。对于目标用户,系统查找与其最相似的K个用户,通过聚合相似用户对未评分景点的评价,生成评分预测。最终推荐预测评分最高的景点。该算法能够有效解决旅游信息过载问题,帮助用户发现符合兴趣的新景点。在实际应用中,可配合在线旅游平台收集真实用户行为数据,进一步优化模型并通过A/B测试评估推荐质量。
在这里插入图片描述

import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
import pandas as pd

# 生成模拟数据
np.random.seed(42)
users = [f'User{i}' for i in range(1, 101)]
attractions = [
    '故宫博物院', '长城', '西湖', '兵马俑', '九寨沟', 
    '张家界', '漓江', '黄山', '布达拉宫', '鼓浪屿'
]

# 创建用户-景点评分矩阵 (0分表示未访问)
ratings = np.zeros((len(users), len(attractions)))
for i in range(len(users)):
    # 每个用户随机评价2-5个景点
    rated_indices = np.random.choice(len(attractions), np.random.randint(2, 6), replace=False)
    ratings[i, rated_indices] = np.random.randint(1, 6, len(rated_indices))

# 转换为DataFrame
ratings_df = pd.DataFrame(ratings, index=users, columns=attractions)

def recommend_attractions(user_id, k=3):
    """
    协同过滤景点推荐
    :param user_id: 目标用户ID
    :param k: 使用的最相似用户数量
    :return: 推荐景点列表
    """
    # 计算用户相似度
    user_similarity = pd.DataFrame(
        cosine_similarity(ratings_df),
        index=ratings_df.index,
        columns=ratings_df.index
    )
    
    # 获取目标用户未评分的景点
    user_idx = np.where(ratings_df.index == user_id)[0][0]
    unrated_attractions = ratings_df.columns[ratings_df.iloc[user_idx] == 0]
    
    # 预测评分
    predictions = {}
    for attraction in unrated_attractions:
        # 找到评价过该景点的用户
        rated_users = ratings_df.index[ratings_df[attraction] > 0]
        
        # 计算加权评分
        numerator = 0
        denominator = 0
        count = 0
        
        # 获取k个最相似用户
        similar_users = user_similarity[user_id].drop(user_id).sort_values(ascending=False)[:k]
        
        for other_user in similar_users.index:
            if other_user not in rated_users:
                continue
                
            similarity = user_similarity.loc[user_id, other_user]
            rating = ratings_df.loc[other_user, attraction]
            
            numerator += similarity * rating
            denominator += abs(similarity)
            count += 1
        
        # 仅当有有效评分时才预测
        if count > 0:
            predicted_rating = numerator / denominator if denominator != 0 else 0
            predictions[attraction] = predicted_rating
    
    # 返回前3个推荐景点
    return [attraction for attraction, _ in sorted(predictions.items(), key=lambda x: x[1], reverse=True)[:3]]

# 测试推荐系统
if __name__ == "__main__":
    target_user = 'User1'
    recommendations = recommend_attractions(target_user)
    print(f"{target_user} 的推荐景点:")
    for i, attraction in enumerate(recommendations, 1):
        print(f"{i}. {attraction}")

<think>好的,我现在需要帮助用户解决如何用Django实现甘肃省旅游数据可视化,并完成一篇15000字的学术论文。首先,我得理清用户的需求。用户可能是一个大学生或者研究人员,需要撰写一篇较长的学术论文,主题涉及Django框架和甘肃省的旅游数据可视化。用户可能对Django有一定了解,但需要具体的实现思路和论文结构指导。 首先,我需要确定论文的结构。通常,学术论文包括摘要、引言、文献综述、方法论、技术实现、数据分析、结果讨论、结论等部分。用户需要的是写作思路和技术实现,所以应该分这两个大块来回答。 技术实现部分需要详细说明Django的架构,如何整合数据可视化工具,比如ECharts或Matplotlib。可能需要涉及数据库的设计,比如使用PostgreSQL或MySQL来存储旅游数据,然后通过Django的ORM进行数据操作。另外,数据可视化的前端展示可能需要用到Django的模板系统,或者前后端分离的方式,比如使用Django REST framework提供API,前端用Vue或React来渲染图表。 然后,写作思路方面,用户需要明确每个章节的内容。比如引言部分要介绍研究背景和意义,文献综述需要分析现有的旅游数据可视化研究,方法论要说明数据收集和处理的方法,技术实现详细描述Django的应用,结果部分展示可视化效果,讨论部分分析结果的意义和不足。 用户可能还需要知道如何获取甘肃省的旅游数据,可能需要建议公开的数据来源,比如政府公开数据、旅游局的统计年报,或者通过网络爬虫获取相关数据。同时,数据处理部分需要清洗、整理数据,确保数据质量。 另外,论文的篇幅较长,需要足够的章节和子章节来展开。可能需要建议每个章节的大致字数分配,比如引言2000字,文献综述3000字,方法论和技术实现各4000字,结果与讨论3000字,结论1000字左右。这样分配可以确保内容详实,达到字数要求。 在技术实现细节中,要提到Django的MVC模式,如何设计模型(Models)来存储数据,视图(Views)处理业务逻辑,模板(Templates)展示页面。数据可视化方面,可能需要使用JavaScript库如ECharts或D3.js,这些可以通过Django模板嵌入到HTML中。或者使用Python的Matplotlib生成图表,再在Django中展示静态图片,但动态交互可能不够,所以更推荐使用前端库。 数据库设计部分,要说明选择哪种数据库,比如PostgreSQL的地理扩展PostGIS,如果涉及地理位置数据的话。模型字段需要根据旅游数据的属性来设计,比如景点名称、游客数量、收入、时间等。 可能还需要考虑用户认证、数据权限管理,如果系统需要多用户访问的话。但学术论文可能更注重核心功能的实现,这部分可能不是重点,但可以简要提及。 在论文写作中,需要引用相关文献,用户可能需要指导如何查找相关研究,比如在Google Scholar、CNKI等平台搜索“旅游数据可视化”、“Django应用”等关键词。引用部分要遵循学术规范,正确标注来源。 用户可能还关心如何验证系统的有效性,比如通过用户调查、性能测试,或者对比其他可视化工具的效果。这些可以作为结果讨论的一部分。 最后,确保技术实现部分有具体的代码示例,比如Django模型的定义、视图函数的编写,以及前端如何调用API获取数据并渲染图表。这些代码片段需要符合Django的最佳实践,并且正确使用LaTeX格式,按照用户提供的系统级指令来排版。 总结下来,我需要分步骤地指导用户如何构建论文结构,详细说明技术实现的各个环节,并提供相关的代码示例和写作建议。同时,要确保回答符合格式要求,正确使用LaTeX,生成相关问题,并添加引用标识。</think>### 基于Django框架的甘肃省旅游数据可视化实现与论文写作指南 #### 一、论文写作框架设计(约5000字) 1. **摘要与关键词**(300字) - 明确研究目的、方法、创新点和结论 - 关键词:Django框架、旅游数据可视化、甘肃省、时空特征分析、智慧旅游 2. **引言**(1500字) - 甘肃省旅游资源禀赋与数字化需求 - 可视化技术在旅游决策中的应用价值[^2] - 研究目标与技术路线 3. **文献综述**(2000字) - 国内外旅游数据可视化研究进展 - Django在空间数据分析中的应用案例[^3] - 现有研究的不足与创新空间 4. **数据采集与处理**(1200字) - 多源数据获取(文旅厅统计年报、OTA平台数据、GPS轨迹数据) - 数据清洗与空间配准方法 - 时空数据库设计规范 #### 二、技术实现方案(约7000字) 1. **系统架构设计** ```mermaid graph TD A[数据层] --> B{PostGIS数据库} B --> C[业务逻辑层] C --> D[Django ORM] D --> E[可视化服务层] E --> F[Web前端] ``` 2. **核心模块实现** - **时空数据建模** ```python class TouristSpot(models.Model): geom = models.PointField(srid=4326) visitor_count = models.IntegerField() income = models.FloatField() timestamp = models.DateTimeField() ``` - **可视化中间件开发** ```python def heatmap_data(request): queryset = TouristSpot.objects.filter( timestamp__range=(start_date, end_date)) return JsonResponse(GeoJSONSerializer().serialize( queryset, geometry_field='geom', fields=('visitor_count',))) ``` 3. **交互可视化实现** - ECharts时空热力图配置 ```javascript myChart.setOption({ visualMap: {type: 'piecewise', calculable: true}, series: [{ type: 'map', mapType: '甘肃', data: api_data, roam: true }] }); ``` #### 三、论文创新点挖掘(约3000字) 1. 基于Django-Admin的定制化数据看板开发 2. 多尺度时空可视化交互方法(省-市-景区三级钻取) 3. 游客行为模式挖掘算法集成
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B站麦麦大数据

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值