基于目标的注意力模型在方面级情感分析中的应用
1. 引言
方面级情感分析旨在确定句子中特定目标词或短语的情感极性,是自然语言处理(NLP)中的一项关键任务。例如,在句子 “Dreadful food but the service was good” 中,“food” 的情感极性为负面,而 “service” 的情感极性为正面。同一句子中不同方面可能有不同的情感极性。
近年来,神经网络在方面级情感分析领域发挥着越来越重要的作用。但在这些方法中,方面词在上下文词中通常被视为同等重要,方面信息在神经网络模型中未被充分融入上下文。后来,一些神经注意力机制被应用于此任务,性能虽有提升,但仍存在一些问题。比如,对于句子 “The local sweet food is delicious, but the service is dreadful.”,若将方面词 “local sweet food” 经词嵌入后简单平均,会丢失重要语义信息,且未考虑每个上下文词对方面词的影响。
为解决这些问题,提出了一种基于目标的注意力模型(TBAM)用于方面级情感分析。TBAM 能更好地检测句子中给定方面的最重要文本信息,在三个公共数据集上取得了最先进的性能。
2. 相关工作
方面级情感分析的传统方法是手动设计特征集,并构建基于特征的情感分类器,但结果高度依赖特征质量,且特征工程劳动强度大。
递归神经网络(RecNNs)最早被引入该领域,但在面对常见语法错误时易出错。后来,循环神经网络(RNNs)在处理句子序列任务中更有效,如 TD - LSTM 方法从句子左右两侧学习特征表示,还有人使用神经池化函数从词嵌入中提取特征。
由