32、关键词生成与动态神经语言模型:创新技术解析

关键词生成与动态神经语言模型:创新技术解析

1. 关键词生成模型

在自然语言处理领域,关键词生成是一项关键任务。这里介绍一种名为 WordRNN 的新型关键词生成模型,它综合考虑了输入序列中的隐藏状态和特定单词。

1.1 单词注意力机制

该模型运用单词注意力机制来利用源单词层面的信息,使源文本的语义表示更全面。注意力权重 $\beta_{tj}$ 的计算公式如下:
$$e^{\beta} {tj} = v^T {\beta} \tanh(W^{\beta} {h} x_j + W^{\beta} {s} s_{t - 1} + b^{\beta} {attn})$$
这里,计算注意力权重 $\beta
{tj}$ 时仅考虑 $x_j$,与传统注意力权重的区别在于是否将源文本中位置 $j$ 之前的单词作为额外输入。$\beta_{tj}$ 可简单视为目标单词 $y_t$ 直接对齐单个源单词 $x_j$ 的概率。计算完原始文本输入的权重后,单词上下文 $c^{\beta} t$ 是所有源单词嵌入向量的加权和:
$$c^{\beta}_t = \sum
{j = 1}^{T} \beta_{tj}x_j$$

1.2 结合隐藏上下文和单词上下文

为了得到目标隐藏状态 $s_t$,单词上下文被视为额外输入。为了更好地结合单词上下文和隐藏上下文,采用了多种方法。
- 融合门(Fuse Gate) :由 Gong 等人提出,具体实现如下,其中 $W^1$、$W^2$、$W^3$、$W

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值