蒙古语成分句法分析与微博情感分析模型研究
蒙古语成分句法分析
不同组合函数的影响
将基于形态知识的蒙古语成分句法分析器与基准模型进行比较。分析器的输入嵌入层由词素表示、最后词缀标记和位置标记组成,并且根据组合函数命名。从开发集的结果(见表 1)来看,所有模型都优于没有任何特征工程或词典的基准模型。其中,具有双向长短时记忆网络(Bi - LSTM)组合函数的分析器表现最佳,其 CL(成分标签)和 CSL(成分结构标签)的 F1 分数分别达到 87.16% 和 85.31%,比最佳基准模型分别高出 10.12% 和 27.23%。这表明该模型能更好地从蒙古语词素中提取句法信息,且 Bi - LSTM 组合函数优于其他函数。
模型 | CL - P(%) | CL - R(%) | CL - F1(%) | CSL - P(%) | CSL - R(%) | CSL - F1(%) |
---|---|---|---|---|---|---|
Wudan | 77.01 | 77.07 | 77.04 | - | - | - |
Ning | 75.89 | 75.71 | 75.80 |