43、蒙古语成分句法分析与微博情感分析模型研究

蒙古语成分句法分析与微博情感分析模型研究

蒙古语成分句法分析

不同组合函数的影响

将基于形态知识的蒙古语成分句法分析器与基准模型进行比较。分析器的输入嵌入层由词素表示、最后词缀标记和位置标记组成,并且根据组合函数命名。从开发集的结果(见表 1)来看,所有模型都优于没有任何特征工程或词典的基准模型。其中,具有双向长短时记忆网络(Bi - LSTM)组合函数的分析器表现最佳,其 CL(成分标签)和 CSL(成分结构标签)的 F1 分数分别达到 87.16% 和 85.31%,比最佳基准模型分别高出 10.12% 和 27.23%。这表明该模型能更好地从蒙古语词素中提取句法信息,且 Bi - LSTM 组合函数优于其他函数。

模型 CL - P(%) CL - R(%) CL - F1(%) CSL - P(%) CSL - R(%) CSL - F1(%)
Wudan 77.01 77.07 77.04 - - -
Ning 75.89 75.71 75.80
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值