用于上下文情感检测的深度神经网络框架
1. 相关工作
情感检测和情感分类一直是自然语言处理(NLP)领域的热门研究课题。现有情感检测研究大多聚焦于文本内容。近年来,深度神经网络被广泛应用于不同领域、媒介和语言的情感分析。常用的情感捕捉模型包括卷积神经网络(CNN)、循环神经网络(RNN),如长短期记忆网络(LSTM)和门控循环单元(GRU)。不过,这些模型主要在句子或话语层面进行情感分类,无法捕捉对话中话语间的上下文和相互依赖关系。
后续也有一些改进的模型出现:
- 有人提出使用双向长上下文短期记忆网络(bcLSTM)来检测对话中话语的情感。
- 之后,有人通过引入记忆网络改进了bcLSTM,该网络还利用说话者信息进行上下文建模。
- 还有人使用双向LSTM捕捉单词依赖关系并提取相关特征,同时应用自注意力机制捕捉对话中话语间的相互依赖关系。
- 另外,有工作使用分层注意力网络模型嵌入对话中话语间的上下文信息。
- 也有人使用双向门控循环单元(Bi - GRU)融合自注意力机制及其词嵌入,有效利用词级和话语级信息。
而提出的新模型与现有模型不同,它会推导话语中每个单词的深度上下文表示,并将其与预训练的Glove词嵌入一起作为特征融入模型。这些词嵌入来自预训练的ELMo模型,能考虑整个上下文,且基于字符,可让网络利用形态线索为训练中未见过的未登录词形成鲁棒表示。同时,使用分层Bi - GRU学习对话上下文,并融合通过类似任务的迁移学习获得的各种手工特征。
2. 提出的方法
提出的框架由两层层次结构组成:下层是话语编码器,用于编码话语;上层是对话编码器,用于编码对话。
具体