提升学生论坛响应能力:教育论坛中重复问题检测
在当今的教育领域,在线论坛已成为促进学生讨论和交流的重要工具。它不仅能够增强学生的参与度,还能推动协作学习。然而,这些论坛也面临着一些问题,其中重复问题的出现较为普遍。本文将介绍一个针对澳大利亚国立大学网页设计与开发课程论坛构建的数据集,并通过实验展示如何利用先进的神经网络模型来检测重复问题。
1. 在线论坛的现状与问题
在线论坛在教育领域的应用越来越广泛,它为学生提供了一个交流和学习的平台。在课程论坛中,学生可以自由提问、回答问题和评价内容,这种微协作的方式有助于促进社区建设、发展自我认同和改善关系动态,从而支持不同知识层面的学习并提升认知过程。
然而,随着论坛参与门槛的降低,论坛的整体质量有所下降,其中一个明显的问题是大量重复问题的出现。虽然目前没有正式的研究对此进行调查,但在一些主要的网络论坛,如StackExchange、Quora和Yahoo! Answers中,都能观察到这一现象。
2. 相关数据集介绍
近年来,与问题相似度相关的数据集不断涌现,以下是一些常见的数据集:
- 卡塔尔生活数据集 :源于卡塔尔生活论坛,包含317个原始问题、3169个相关问题和31690条评论,用于社区问答论坛的答案选择评估。
- CQADupStack数据集 :包含来自十二个StackExchange子论坛的线程,标注了重复问题信息,并提供预定义的训练、开发和测试拆分。不同子论坛的重复问题百分比差异较大,平均每个重复问题的数量范围较小。
- Quora问题对数据集