文本识别模型性能与概率校准研究
在当今的科技领域,文本识别和问答系统的发展日新月异。本文将聚焦于Bi - MPM模型在重复问题数据集上的性能表现,以及循环文本识别网络中的概率校准问题。
Bi - MPM模型在重复问题数据集上的性能
- 模型性能数据
| 数据集 | 测试集准确率 |
| — | — |
| Quora Question Pairs | 88.17% |
| Meta StackExchange | 88.95% |
| AskUbunutu | 92.34% |
| Comp1710 Piazza | 91.78% |
从这些数据中,我们可以展开两点讨论:
1. 问题长度与模型性能的关系 :平均问题长度似乎对模型性能有反向影响。模型在平均问题长度最小的数据集上表现最差。这有点令人惊讶,因为较长的问题通常包含与潜在问题核心并非完全相关的信息。
2. 不同数据集准确率的比较 :尽管COMP1710 Piazza数据集与AskUbuntu和Meta StackExchange数据集存在重大差异,但在这些数据集上实现的测试准确率相当。这可能是由两个相互冲突的因素造成的:
- COMP1710 Piazza数据集的领域范围狭窄,使得模型从训练集中学习相对容易,因为它的词汇量非常有限,因此可以进行更好的分析。
- 缺乏维护高问题质量的激励措施,导致数据集中的问题存在大量拼写错误,并且语法通常较差。
考虑到这两点,COMP1