电商销售需求预测:从数据预处理到模型评估
在电商领域,准确的销售需求预测至关重要。下面将详细介绍一种基于长短期记忆网络(LSTM)的销售需求预测框架,包括数据预处理、LSTM网络架构、整体流程以及实验评估等方面。
1. 数据预处理
电商销售数据集通常存在各种问题,需要进行预处理来提高数据质量和模型性能。
1.1 处理数据质量问题
数据提取、转换和加载(ETL)是数据仓库管道中的主要数据集成过程,但在实时处理中往往不稳定,可能导致数据集中出现虚假的“零”销售。为了解决这个问题,提出了一种区分实际零销售和虚假零销售(“假零”)的方法。具体步骤如下:
1. 计算每个商品过去6个月的最小非零销售额。
2. 如果某个商品的最小非零销售额高于阈值γ = 10,则将零销售视为“假零”销售,并将其作为缺失观测值处理。
需要注意的是,由于零销售的真实情况不可用,数据集中可能会出现潜在的误报。
1.2 处理缺失值和销售归一化
使用前向填充策略来插补数据集中缺失的销售观测值。该方法使用最近的有效观测值来替换缺失值。实验表明,这种方法优于线性回归和分类与回归树(CART)等更复杂的插补技术。
此外,由于产品种类繁多,销售数量范围不同,在构建全局模型之前需要进行数据归一化。采用均值尺度变换方法,将产品的平均销售额作为缩放因子。具体公式如下:
[
X_{i,new} = \frac{X_i}{1 + \frac{1}{k} \sum_{t=1}^{k} X_{i,t}}
]
其中,$X_{i,new}$ 表示归一化后的销售向量,$k$ 表示产