深度逐点预测与实时金融数据预测技术解析
在计算机视觉和金融数据预测领域,有两项重要的技术值得深入探讨,它们分别是用于动作时间提案生成的深度逐点预测(DPP)方法,以及用于实时金融数据预测的元认知循环核在线序贯极限学习机(Meta - RKOS - ELMALD - DDM)算法。
深度逐点预测(DPP)用于动作时间提案生成
在动作时间提案生成的研究中,DPP是一种简单而高效的方法。它摒弃了传统的预定义滑动窗口方式来生成提案候选,而是直接对不同特征图中的每个点预测左右偏移量。
推理过程
在推理阶段,会对所有特征图中的每个点预测动作度得分和边界偏移。通过对公式(1)进行逆变换来计算最终边界,接着收集同一视频中不同剪辑的提案,最后根据动作度得分对视频的所有提案进行排序,并使用阈值为0.7的非极大值抑制(NMS)进行过滤。
消融实验
- 与预定义滑动窗口方法对比 :对于基于滑动窗口的方法,每个时间戳处滑动窗口的密度是影响性能的重要因素。多数方法采用多尺度锚点策略以覆盖更多真实提案。实验设置了公平的对比实验,结果如下表所示:
| 方法 | 比率 | AR@50 | AR@100 | AR@200 |
| — | — | — | — | — |
| 滑动窗口1 | 1 | 24.2 | 32.05 | 39.63 |
| 滑动窗口2 | 2 | 24.25 | 32.3 | 40.76 |
| 滑动窗口3 | 3 | 24.42 | 32.79 | 41.09 |
| 滑动窗口5 | 5 | 23.07 | 31.08