糖尿病安全血糖预测的预测相干LSTM RNN及鲁棒BiLSTM掩码声学波束形成技术
在当今的科技领域,有两项研究成果在不同领域展现出了重要的应用价值,一项是关于糖尿病血糖预测的新技术,另一项则是针对自动语音识别的改进方案。
糖尿病血糖预测技术
在糖尿病治疗中,准确预测未来血糖值至关重要。传统的循环神经网络在预测时可能存在稳定性不足的问题。为了解决这个问题,研究人员提出了一种新的循环神经网络损失函数。
这个新的损失函数不仅会对预测误差进行惩罚,还会对预测的变化误差进行惩罚,从而帮助网络做出更稳定的预测。研究人员将该模型应用于糖尿病患者未来血糖值的预测。
首先,通过实验验证了使用循环神经网络(特别是带有LSTM单元的网络)的可行性,发现基线LSTM模型与其他先进模型相比具有竞争力。接着,该方法显著提高了预测结果的临床可接受性。最后,与另一种平滑技术进行比较,虽然两种方法在临床可接受性上效果相当,但新方法在预测准确性上的损失更小,效率更高。
在评估模型时,使用了P - EGA(预测误差网格分析)和R - EGA(速率误差网格分析)来对LSTM和pcLSTM模型进行分析。结果显示,pcLSTM在RMSE(均方根误差)、dRMSE(差分均方根误差)、AP(可接受预测)和EP(误差预测)率上分别有 +8.5%、 - 24.3%、 +26.0%和 - 14.14%的变化,表明其在权衡各指标时更为高效。
以下是不同模型评估指标变化情况的表格:
| 模型 | RMSE变化 | dRMSE变化 | AP率变化 | EP率变化 |
| ---- | ---- | ---- | ---- | ---- |
| pc