公钥基础设施中的置信评估与离散对数认证
在当今数字化的时代,公钥基础设施(PKI)的安全性和效率至关重要。本文将深入探讨公钥基础设施中的置信评估方法,以及离散对数问题在安全认证中的应用。
公钥基础设施中的置信评估
在公钥基础设施中,置信评估是确定密钥有效性和信任度的重要过程。目前,不确定性方法可以分为外延方法和内涵方法。
外延系统中,公式的不确定性是其子公式不确定性的函数。例如,PGP 就是一个外延系统的代表,其密钥的有效性是根据公钥下签名密钥的信任值计算得出的。然而,外延系统虽然在计算效率上通常优于内涵系统,但往往会产生违反直觉的结论。
内涵系统则将不确定性与“事态”或“可能世界”相关联。Maurer 的方法就是内涵系统的一个例子,通过指定可能视图上的概率分布来计算假设的置信值。
Reiter 和 Stubblebine 提出了认证方法的原则(RS 原则),这些原则可以看作是总结常识的一般指导方针,但相对模糊。与之相比,本文的原则是在精确的数学框架内制定的,更加精确,但涵盖范围相对较窄。
例如,RS 原则 4 中“度量的输出应符合直觉”的含义,在本文中通过置信评估原则进行了精确说明。RS 原则 5 中提到“度量应能抵御行为不端实体对其模型的操纵,并明确其对各种不当行为的敏感性”,但未明确度量模型的具体含义和操纵方式。本文通过给定证据和假设的论证结构来表征信任网络的可靠性。
PGP 的置信评估(版本 2.6.2)可以用以下形式化描述:
e(c, AutX,K) =