蒙哥马利形式椭圆曲线的特性与应用
1. 预备知识
在椭圆曲线的研究中,有两种常见的形式:韦伊斯特拉斯形式(Weierstrass - form)和蒙哥马利形式(Montgomery - form)。
设 (p(\geq5)) 为素数,(F_p) 是阶为 (p) 的有限域。对于 (A,B\in F_p),由 (E_M: BY^2 = X^3 + AX^2 + X) 定义的椭圆曲线称为蒙哥马利形式椭圆曲线;对于 (a,b\in F_p),由 (E: y^2 = x^3 + ax + b) 定义的椭圆曲线称为韦伊斯特拉斯形式椭圆曲线。
椭圆曲线 (E) 或 (E_M) 的((F_p) - 有理)点集构成一个以无穷远点 (O) 为单位元的群。曲线 (E)(或 (E_M))的点数称为曲线阶,记为 (#E)(或 (#E_M))。对于椭圆曲线上的点 (P),(点)阶是使得 (nP = O) 的最小正整数 (n)。例如,任何蒙哥马利形式椭圆曲线上的点 ((0,0)) 的阶为 2。余因子是曲线阶除以基点阶的商。
设 (r\in F_p) 为二次非剩余。对于韦伊斯特拉斯形式椭圆曲线 (E: y^2 = x^3 + ax + b),(E_r: y^2 = x^3 + ar^2x + br^3) 称为 (E) 的扭转;对于蒙哥马利形式椭圆曲线 (E_M: BY^2 = X^3 + AX^2 + X),(E_{M_r}: B_rY^2 = X^3 + AX^2 + X) 称为 (E_M) 的扭转。且有 (#E+#E_r = 2(p + 1)) 和 (#E_M+#E_{M_r}= 2(p + 1))。
若存在定义在 (F_p) 上的蒙哥马利形式椭圆曲线 (E_M: BY^2 =