具有可扩展恢复代理安全性的可恢复性证书
1. 基于扩展域的DL系统的部分安全性
在扩展域的DL系统中,设 $\gamma \in GF(p^t)$ 是阶为 $\omega$ 的群 $\Gamma$ 的生成元。在实际应用里,$\gamma$ 不在 $GF(p^t)$ 的真子域中,$\omega$ 要么等于一个大素数 $\varpi$,要么等于 $p^t - 1$。
对于多项式的系数,若 $J$ 是 $GF(p)[X]$ 中的元素,即系数在基域 $GF(p)$ 中的多项式,那么对于任意自然数 $i$,$J$ 的第 $i$ 个系数记为 $[J] i$。若 $F = \sum {i = 0}^{t} a_iX^i$ 是 $GF(p)[X]$ 中次数为 $t$ 的不可约多项式,那么扩展域 $GF(p^t)$ 可描述为 $GF(p)[X]/(F)$,即 $GF(p^t)$ 中的每个元素 $f$ 都能唯一地表示为模 $F$ 的次数小于 $t$ 的多项式。在此设定下,对于小于 $F$ 次数的任意自然数 $i$,第 $i$ 个系数 $[f]_i$ 记为 $[f \bmod F]_i$。
存在多种这样的表示,部分具有特殊性质。例如,若 $t + 1$ 也是素数,且 $p$ 是模 $t + 1$ 的原根,就可以使用一种特殊的不可约多项式,其零点构成最优正规基。借助这样的基,在 $GF(p^t)$ 中进行幂运算比在规模相当的基本域中更高效。
下面证明计算Diffie - Hellman密钥的系数(即“小部分”)和计算整个密钥一样困难。这一结果与研究基本有限域 $GF(p)$ 中Diffie - Hellman密钥最高有效位(MSB)安全性的结果类似。