34、离散对数签名方案的设计验证

离散对数签名方案的设计验证

在数字签名领域,保障签名方案的安全性至关重要。本文将深入探讨基于离散对数的签名方案,介绍相关的安全概念、具体的签名方案以及它们的安全性验证。

1. 基本定义

1.1 签名方案

签名方案由三个多项式时间随机算法组成:
- Key - Gen :输入随机字符串,输出密钥对 $(X, Y)$,其中 $X$ 是私钥,$Y$ 是公钥。
- Sign :输入消息 $M$ 和私钥 $X$,生成签名 $Sig$。
- Ver :输入消息 $M$、签名 $Sig$ 和公钥 $Y$,验证签名是否有效。

1.2 不可伪造性

如果攻击者在获得公钥 $Y$ 和 $k$ 条自适应选择消息的签名后,无法以不可忽略的概率生成新消息 $M$ 的签名,则称该签名方案是不可伪造的。

1.3 哈希函数的安全概念

  • 多碰撞自由性 :若不存在 $\ell$ 元组 $(x_1, \ldots, x_{\ell})$ 使得 $h(x_1) = \ldots = h(x_{\ell})$,则称函数 $h$ 是 $\ell$ - 碰撞自由的。
  • 多碰撞抗性 :若在计算上无法找到 $\ell$ 元组 $(x_1, \ldots, x_{\ell})$ 使得 $h(x_1) = \ldots = h(x_{\ell})$,则称函数 $h$ 是 $\ell$ - 碰撞抗
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值