最优高效可问责时间戳与伪随机混合技术解析
1. 最优高效可问责时间戳
1.1 协议通信平衡
某些协议通过将负担从时间戳协议转移到时间戳完成协议,重新平衡了通信。相比其他协议,这种设计的直觉是轻量级的时间戳协议有助于避免简单的重排序攻击。若 $G$ 是简单连通认证图,由于哈希函数 $h$ 的抗碰撞性,传输 $L_v$ 就足够了。
1.2 最优性分析
- 良好图的定义 :时间戳服务的轮图 $G = (V, E)$ 需基于简单连通图,对于任意源 $v$,其证书中要包含 $L_1$。更精确地说,对于任意源 $v$,在其每个根路径上都存在节点 $w$,使得 $(1, w) \in E$,且 $w$ 可从 $(1, \ldots, v)$ 计算得出,但不能从 $(1, \ldots, v - 1)$ 计算得出,满足这些条件的图称为良好图。
- 相关定义与定理 :
- 对于良好图 $G$,定义 $a(G) = \max_{v\in S(G)} \min_{P} |A_G(P(v))|$,其中 $P$ 为所有通过函数。根据证书定义,$|Cert(v)| = k(\min_{P} |a_G(P)| + 1)$,所以 $\max_{v} |Cert(v)| = k(a(G) + 1)$。因此,$a(G)$ 的紧下界可得出 $\max_{v} |Cert(v)|$ 的紧下界。
- 定理 1 :
- 对于有根有向无环图 $G$,$a(G) \geq