38、伪随机混合:共享密码学的工具

伪随机混合:共享密码学的工具

1. 基础概念介绍

在密码学领域,有几个重要的基础概念值得我们深入了解。
- 离散对数 :设 $P$ 为素数,$g$ 是 $Z_P$ 中一个大阶子群的生成元。函数 $f(x) = g^x \mod P$ 是单向函数,求解 $x$ 被称为离散对数问题。Diffie-Hellman 密钥交换 [DH] 就基于此构建。我们也可以在合数上类似地定义离散对数。
- 伪随机函数 :对于伪随机函数族,给定族中的一个随机成员,在任何选定输入点的结果看起来都是随机的,并且进行多项式次数的采样也无法将其与真正的随机函数区分开来。我们通常用 PRF 表示伪随机函数族,用 $PRF_k$ 表示由 $k$ 索引的 PRF 中的元素。
- 分布式密码学 :在分布式密码系统中,应用密码函数(例如 RSA 私钥函数)的能力通过门限方案进行分布。有一组 $l$ 个服务器,它们通过份额 $s_1, \ldots, s_l$ 安全地共享私钥 $d$。这些服务器连接到一个公共广播介质 $C$(通信信道),在该信道上发送的消息能到达所有连接的方。我们假设每个服务器都有本地随机源,并且系统是同步的。当有 $t$ 个股东组成的法定人数可用时,他们可以合作计算函数,但少于法定人数无法破坏系统。

2. 伪随机混合的原理

伪随机混合的核心思想是将(1)密码计算和(2)对伪随机数的计算纠缠在一起,使得组合结果与仅进行密码计算的结果相同。在本文中,密码计算通常是分布式计算中某些部分结果的计算,这些部分结果将被求和,我们会混入(加入)总和为零的伪随机数。这样,密

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值