密码密钥大小的选择与估算
在当今数字化时代,密码学对于信息安全至关重要。而选择合适的密码密钥大小是确保信息安全的关键因素之一。本文将深入探讨影响密码密钥大小选择的因素,并介绍如何估算不同密码系统的密钥大小下限。
1. 密码系统概述
- 椭圆曲线系统(EC) :假设曲线是随机选取的,且仅使用素域上的曲线。对于椭圆曲线离散对数问题(ECDL)的安全性存在不同观点,有人认为椭圆曲线丰富的数学结构可能存在未知风险,也有人认为EC系统已被广泛研究,足够安全。因此,为EC系统建议了两种密钥大小:一种基于“无密码分析进展”,另一种基于“与RSA和TDL系统相同速率的密码分析进展”。
- 密码哈希函数
- 描述 :将任意长度的消息映射为固定长度的“哈希值”,满足多种特性。哈希函数的大小是哈希值的比特长度。
- 攻击方式 :可通过生日悖论攻击。成功攻击所需的哈希函数应用次数与$2^{x/2}$成正比,其中$x$是哈希函数的大小。假设哈希函数需具备“任意碰撞抗性”,对于“目标碰撞抗性”哈希,若哈希函数使用得当,大小可减半。
- 软件数据点 :MD4、MD5、SHA - 1和RIPEMD - 160分别需要241、345、837和1016个奔腾周期。生日悖论攻击中哈希函数应用的软件速度与单个DES块加密的软件速度相当。
- 专用硬件数据点 :部分哈希函数已设计出专用硬件