59、密码学密钥大小选择与结构化多签名方案解析

密码学密钥大小选择与结构化多签名方案解析

1. 密码学密钥大小选择

在密码学领域,选择合适的密钥大小对于保障信息安全至关重要。密钥大小的选择需要综合考虑多个因素,包括计算能力的发展、密码分析的进展以及不同密码系统的特点。

1.1 密钥大小计算
  • 椭圆曲线(EC)密钥下限 :在不考虑密码分析进展的情况下,通过公式 (t^2 * 2^{(t - 109)/2} \geq 10^{92} * IMY(y) / (2.2 * 10^6)) 计算得出的 (t) 代表推荐的 EC 密钥大小下限。这里需要注意的是,由于 (2.2) MMY 估计较为乐观,所以 (t) 值相对偏大。
  • 考虑密码分析进展的密钥大小 :若考虑类似摩尔定律的密码分析进展,可通过取最小的 (u) 来确定密钥大小,公式为 (u^2 * 2^{(u - 109)/2} \geq 2^{2(y - 1999)/3} * 10^{92} * IMY(y) / (2.2 * 10^6))。
1.2 表 1 的计算与使用
  • 表 1 计算说明 :所有估计值可计算 1999 年之前的年份,部分结果可在表 1 中找到。不过,对于“有进展的 EC”列,计算 1999 年之前的数据严格来说没有实际意义。若用斜体数据,具体使用方法在后续有说明。
  • 表 1 使用示例 :假设要保证电子信息安全到 2020 年,查看表 1 中 2020 年的行,可知 2020 年 (2.9
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值