rock5
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
70、基于直方图的生成式无监督学习模型
本文介绍了一种基于直方图的生成式无监督学习模型,通过将数据投影到由加权主成分分析(WPCA)计算的新轴上,并为每个轴构建一维直方图来表示聚类分布。该方法降低了模型复杂度,同时保持了对复杂数据分布的建模能力。通过期望最大化(EM)算法进行参数估计,该模型在聚类质量和生成新样本方面优于传统的高斯混合模型(GMM)和K-means等经典算法。实验结果表明,该方法在多种数据集上表现优异,尤其适用于非高斯分布和复杂数据结构。原创 2025-07-22 05:01:30 · 14 阅读 · 0 评论 -
69、基于行列式点过程的聚类集成选择与生成式直方图模型
本文介绍了两种创新的聚类与数据建模方法:基于行列式点过程的聚类集成选择(DPPCES)和生成式直方图模型的无监督学习方法。DPPCES通过平衡基础聚类的质量与多样性,有效选择重要的聚类进行集成,提高聚类准确性;生成式直方图模型则通过簇定义的投影降低模型复杂度,能够处理更广泛的分布,并高效生成与训练数据相同分布的新实例。这两种方法在数据挖掘、图像识别、生物信息学等领域具有广泛的应用前景。原创 2025-07-21 09:12:04 · 18 阅读 · 0 评论 -
68、基于残差D - 网络学习脑连接动态及基于行列式点过程的聚类集成选择
本文探讨了两种创新方法在脑科学研究和聚类分析中的应用。首先,基于残差D-网络的方法被提出用于学习脑连接动态,并在脑疾病分类任务中展现出优越性能,特别是在区分正常对照(NC)与轻度认知障碍(MCI)受试者方面。其次,基于行列式点过程(DPP)的聚类集成选择方法(DPPCES)被设计用于优化基聚类选择,通过引入随机性与多样性平衡,提升了聚类集成的性能。两种方法分别在分类与聚类任务中展现了良好的泛化能力和应用潜力,为未来的研究提供了重要的技术支撑和创新方向。原创 2025-07-20 16:51:08 · 16 阅读 · 0 评论 -
67、利用残差D - 网对大脑连接动态进行无监督预训练
本博客介绍了一种基于残差D-网的无监督预训练方法,用于分析大脑连接动态,以区分早期和晚期轻度认知障碍(MCI)患者与正常健康对照(NC)受试者。通过深度学习架构残差D-网,模型能够有效地学习大脑功能连接的动态变化,从而在数据有限的情况下实现高准确率的分类性能。研究使用了ADNI队列的rs-fMRI数据,并结合滑动窗口协方差矩阵和循环多尺度表示,成功捕捉了大脑动态行为。实验结果表明,该方法在两个分类任务中均显著优于以往技术,展示了其在阿尔茨海默病早期检测中的潜力。原创 2025-07-19 10:38:57 · 13 阅读 · 0 评论 -
66、基于改进无监督判别投影的半监督深度学习
本文提出了一种基于改进无监督判别投影(UDP)的半监督深度学习方法,旨在解决标注数据不足情况下的模型训练问题。通过引入局部和全局样本分布信息,改进的UDP正则化项能够有效提升深度学习模型的泛化能力。实验表明,该方法在MNIST和SVHN等数据集上均取得了优于现有方法的分类准确率。未来研究将聚焦于邻域图构建方法的改进、多种算法的结合以及更复杂网络结构的应用。原创 2025-07-18 11:46:03 · 8 阅读 · 0 评论 -
65、无监督行人重识别的深度聚类引导学习
本文提出了一种基于深度聚类引导学习的无监督行人重识别方法(CEG),通过在未标记数据集和有标签辅助数据集上进行聚类,挖掘聚类级监督信号,并结合可靠和困难样本挖掘策略以及加权点到集三元组损失,有效学习有判别性的特征嵌入。实验表明,该方法在Market-1501和DukeMTMC-reID数据集上均取得了优越的性能。原创 2025-07-17 12:29:11 · 16 阅读 · 0 评论 -
64、加速词袋模型与自组织映射及无监督行人重识别的深度聚类引导学习
本文介绍了两种计算机视觉领域的创新方法:一是通过自组织映射(SOM)加速词袋(BoW)模型的训练和编码过程,显著提高了图像分类的效率;二是提出了一种深度聚类引导学习方法,通过挖掘无监督行人重识别(RE-ID)中的潜在监督信号,有效解决了缺乏成对标签和身份信息带来的挑战。实验表明,这两种方法在各自领域均表现出优异的性能,为未来的研究和实际应用提供了新的思路。原创 2025-07-16 11:24:44 · 11 阅读 · 0 评论 -
63、量子聚类与加速词袋模型的图像分类研究
本文探讨了量子K-means聚类算法和加速词袋模型在图像分类中的应用。研究展示了量子K-means在聚类质量与经典方法相当的情况下,具有更低的时间复杂度,尤其适合处理大数据集。同时,基于自组织映射的加速词袋模型通过改进SOM和快速K近邻搜索编码方法,显著提升了图像分类的效率,并在MNIST和CIFAR-10数据集上验证了其有效性。未来研究将探索量子算法与其他机器学习任务的结合,并进一步优化加速模型的性能。原创 2025-07-15 11:11:50 · 12 阅读 · 0 评论 -
62、量子原型聚类的距离估计
本文探讨了量子原型聚类中的距离估计方法,并介绍了基于量子计算的K-means聚类算法。通过分析三种不同的量子距离计算方法(Wiebe、Lloyd和Anagolum),比较了它们在寻找最近质心的准确性和稳定性。结合Swap测试和Grover算法,量子K-means算法能够在大规模高维数据中高效地完成聚类任务。实验结果表明,该算法在Iris、Wine和Breast Cancer数据集上表现出良好的分类效果,并展示了量子计算在机器学习领域的潜力。文章还讨论了量子K-means的优势、挑战及在金融、医疗和图像识别等原创 2025-07-14 15:48:39 · 14 阅读 · 0 评论 -
61、基于冗余最小化的矩阵分解无监督特征选择方法
本文提出了一种基于冗余最小化与矩阵分解的无监督特征选择方法(MFRM),旨在选择最具代表性的特征并减少特征间的冗余。通过结合矩阵分解、谱分析与稀疏正则化,该方法能够同时学习聚类标签并选择非冗余特征。实验表明,MFRM 在多个图像数据集上优于现有方法,具有良好的聚类性能和特征选择能力。原创 2025-07-13 09:47:47 · 6 阅读 · 0 评论 -
60、离线阿拉伯手写识别:MDLSTM与Maxout的融合探索
本文探讨了在离线阿拉伯手写识别系统中融合MDLSTM与Maxout单元的方法,以解决梯度消失问题并提升识别性能。通过在LSTM单元内和MDLSTM前馈层中集成Maxout单元,并在不同组大小下进行实验对比,结果显示组大小为4时效果最佳。此外,文章还介绍了无监督特征选择的重要性,并提出了一种新的基于矩阵分解与冗余最小化的UFS方法(MFRM),该方法能够有效减少特征冗余,提高模型准确率。最后,对两个研究方向的未来工作进行了展望。原创 2025-07-12 15:21:11 · 8 阅读 · 0 评论 -
59、语音处理与阿拉伯手写识别技术解析
本文详细解析了语音处理和阿拉伯手写识别领域的创新技术。在语音处理方面,探讨了教师-学生学习方法和基于掩码的后处理技术,有效提高了自动语音识别(ASR)的性能和鲁棒性;在阿拉伯手写识别方面,介绍了将Maxout单元融入MDLSTM的方法,克服了梯度消失问题,显著提升了识别准确性。这些技术为相关领域的应用提供了新的思路和实践指导。原创 2025-07-11 13:00:12 · 11 阅读 · 0 评论 -
58、糖尿病安全血糖预测的预测相干LSTM RNN及鲁棒BiLSTM掩码声学波束形成技术
本文介绍了两项技术研究成果:一是基于pcLSTM的糖尿病安全血糖预测方法,通过新设计的损失函数提升预测稳定性与临床可接受性;二是鲁棒的BiLSTM掩码声学波束形成技术,结合教师-学生学习方案和后处理方法,有效解决自动语音识别中的数据不匹配问题。这两项技术在各自领域均展现出显著的性能提升和应用潜力。原创 2025-07-10 13:40:18 · 13 阅读 · 0 评论 -
57、基于预测一致性LSTM的循环神经网络实现更安全的糖尿病患者血糖预测
本文提出了一种基于预测一致性LSTM的循环神经网络模型(pcLSTM),用于提高糖尿病患者血糖预测的稳定性与临床可接受性。通过引入双输出架构和变化惩罚损失函数(cMSE),模型在连续预测中表现出更高的连贯性,从而减少错误预测带来的临床风险。研究基于两个真实数据集(Ohio T1DM和IDIAB)进行验证,并与其他先进模型(如ELM、GP、LSTM、SVR)比较,结果表明pcLSTM在预测变化准确性和临床可接受性方面显著优于现有方法。此外,平滑处理技术也被证明能进一步提升模型的临床适用性。原创 2025-07-09 12:35:35 · 19 阅读 · 0 评论 -
56、人类头部朝向估计的深度时空场研究
本文提出了一种结合深度CNN特征、手工特征(HoG)和上下文信息的时空场模型,用于解决场景中多人离散头部朝向估计问题。与现有方法相比,该方法通过融合深度特征和手工特征,同时引入空间和时间上下文建模,显著提高了头部朝向估计的准确性。实验在TVHI和HH数据集上进行,验证了该方法的有效性。此外,文章还总结了方法优势、技术细节,并展望了其在智能监控、人机交互和视频分析等领域的应用前景,提出了未来研究方向。原创 2025-07-08 12:21:02 · 11 阅读 · 0 评论 -
55、实时金融数据预测与人类头部朝向估计技术解析
本文介绍了实时金融数据预测与人类头部朝向估计的技术方法。金融预测部分提出了一种结合改进DDM和元认知学习策略的RKOS-ELMALD模型(Meta-RKOS-ELMALD-DDM),通过ALD核滤波器和动态更新机制提升预测性能,同时显著减少训练时间。在多个金融数据集(如日经225、恒生指数等)的实验表明,该模型在多步预测中具有优异的精度和效率。此外,文章还提出了一种基于深度表示和特征融合的人类头部朝向估计方法,通过条件随机场融合浅层、深层特征及时空上下文信息,显著提升了估计的准确性和鲁棒性。这些方法在金融投原创 2025-07-07 13:15:16 · 10 阅读 · 0 评论 -
54、深度逐点预测与实时金融数据预测技术解析
本文深入解析了两种关键技术:深度逐点预测(DPP)用于动作时间提案生成,以及元认知循环核在线序贯极限学习机(Meta-RKOS-ELMALD-DDM)用于实时金融数据预测。DPP通过高效、无模糊问题的尺度分配策略,在动作提案生成任务中表现出优越性能;而Meta-RKOS-ELMALD-DDM则通过解决概念漂移问题和减少参数依赖,显著提升了金融时间序列预测的准确性和效率。文章还探讨了两种方法的技术优势、实验对比以及未来研究方向。原创 2025-07-06 13:38:50 · 10 阅读 · 0 评论 -
53、电商销售需求预测与视频动作时间提案的深度点预测
本文探讨了两个深度学习技术在不同领域的应用:一是基于 LSTM 的电商销售需求预测框架,通过利用产品层次结构中的跨产品相关性以及系统分组策略,提升了预测的准确性与稳健性;二是深度点预测网络(DPP),用于视频动作时间提案,突破了传统滑动窗口和分组方法的限制,实现了高效且精确的动作检测。两种方法分别在电商销售预测和视频处理领域展现出显著的优势和应用潜力。原创 2025-07-05 11:09:49 · 14 阅读 · 0 评论 -
52、电商销售需求预测:从数据预处理到模型评估
本文介绍了一种基于长短期记忆网络(LSTM)的电商销售需求预测框架,涵盖了数据预处理、LSTM网络架构、整体流程和实验评估等内容。通过处理数据质量问题、插补缺失值、销售归一化以及基于领域知识和时间序列聚类的产品分组策略,显著提升了模型性能。实验评估显示,LSTM的不同变体在不同商品组和数据集上表现出色,尤其是对于销售排名高且零销售密度低的'头部商品'。研究还比较了多种预测模型,包括LSTM.ALL、LSTM.GROUP、LSTM.FEATURE、LSTM.CLUSTER等,并验证了产品分组策略在提高预测准确原创 2025-07-04 11:01:58 · 28 阅读 · 0 评论 -
51、电商与医疗领域的智能预测技术:从销售到疼痛强度的精准洞察
本文探讨了智能预测技术在电商销售需求预测和医疗领域自动疼痛强度估计中的应用。通过基于长短期记忆网络(LSTM)的预测框架,电商业务能够更准确地进行销售需求预测,从而优化库存规划和促销策略;在医疗领域,结合关键帧分析器和时间分析器的混合网络框架,实现了对疼痛强度的连续估计,并展示了优于现有技术的性能。研究强调了深度学习技术在提升预测和估计准确性方面的巨大潜力,以及其在实际应用中的重要价值。原创 2025-07-03 11:48:09 · 11 阅读 · 0 评论 -
50、基于埃尔米特级数的广义回归神经网络与连续疼痛强度估计
本博文探讨了基于埃尔米特级数的广义回归神经网络在处理时变环境中的回归问题,以及其在连续疼痛强度估计中的应用。研究通过理论推导和模拟实验验证了算法在增量概念漂移情况下的收敛性,并提出了一种结合卷积神经网络和递归卷积神经网络的深度混合模型,用于更准确、稳定的疼痛强度估计。实验表明,该方法在UNBC-McMaster数据库上表现优异,显著优于现有方法。原创 2025-07-02 14:49:24 · 9 阅读 · 0 评论 -
49、基于循环文本识别网络概率校准与Hermite级数的流数据挖掘研究
本文围绕循环文本识别网络的概率校准与基于Hermite级数的流数据挖掘回归算法展开研究。在文本识别领域,提出基于DenseNet和ResNet50的CNN校准方法,有效降低预期校准误差(ECE),表现出优于传统方法的适应性;在流数据挖掘领域,提出基于Hermite正交级数展开的回归函数漂移跟踪算法,通过理论分析证明了其在多种概念漂移情况下的收敛性。实验结果与理论推导验证了所提方法的有效性,未来将探索更广泛的应用场景和算法优化方向。原创 2025-07-01 16:43:46 · 13 阅读 · 0 评论 -
48、文本识别模型性能与概率校准研究
本博客主要探讨了文本识别模型的性能分析与概率校准问题。首先分析了Bi-MPM模型在不同重复问题数据集上的性能表现,发现平均问题长度对模型性能具有反向影响,并探讨了数据集特点对准确率的影响。此外,研究了循环文本识别网络中的概率校准问题,提出了校准CNN方法,通过利用原始图像数据进行自适应校准,有效降低了预期校准误差并提高了字符预测的准确性。最后,对问答系统优化和文本识别模型校准的未来研究方向进行了展望。原创 2025-06-30 12:40:02 · 11 阅读 · 0 评论 -
47、提升学生论坛响应能力:教育论坛中重复问题检测
本文探讨了在线教育论坛中重复问题检测的重要性,并介绍了一个针对澳大利亚国立大学网页设计与开发课程论坛构建的新数据集COMP1710 Piazza。通过使用先进的神经网络模型Bi-MPM进行实验,展示了该模型在重复问题检测任务中的有效性,并分析了其在不同数据分布下的性能表现。文章还提出了优化策略和实际应用方案,旨在提升学生论坛的响应能力和质量。原创 2025-06-29 15:28:31 · 12 阅读 · 0 评论 -
46、用于上下文情感检测的深度神经网络框架
本文提出了一种用于对话上下文情感检测的深度神经网络框架(CAD)。该框架采用分层结构,结合Bi-GRU编码器和多种手工特征,有效捕捉对话中的上下文信息和情感特征。通过在EmotionLines 2018基准数据集上的实验验证,模型在加权和未加权准确率上均优于现有方法。同时,误差分析揭示了模型在情感漂移和特定表达理解上的挑战,为未来优化提供了方向。原创 2025-06-28 13:40:42 · 12 阅读 · 0 评论 -
45、对话响应生成与上下文情感检测的深度研究
本博文深入探讨了自然语言处理领域的两个重要研究方向:对话响应生成和上下文情感检测。针对对话响应生成中的‘安全回复’问题,提出了一种基于主题感知上下文的编码/解码模型,结合BM25算法、LDA主题模型和注意力机制,以提升响应的多样性和质量。同时,介绍了一种基于GRU的上下文情感检测(CAD)框架,通过分析对话中的上下文信息,更准确地识别情感倾向。博文还讨论了模型的技术优化、应用场景以及未来发展方向,如多模态信息融合、跨语言研究和强化学习的应用。原创 2025-06-27 15:17:03 · 11 阅读 · 0 评论 -
44、BERT在微博情感分类及对话回复生成中的应用研究
本研究探讨了BERT在微博情感分类和对话回复生成中的应用。在情感分类任务中,基于BERT的模型通过引入上下文信息和层次结构,结合CRF层,显著提高了性能,优于传统RNN及其变体方法。在对话回复生成任务中,提出了一种主题感知的上下文建模框架,并结合对抗学习,有效解决了“安全回复”问题,生成了更具针对性和多样化的回复。研究结果表明,BERT在情感分类任务中具有强大的性能,而在回复生成任务中,主题感知建模和对抗学习的结合也展现了良好效果。未来的研究方向包括优化BERT在微博文本上的适应性和进一步提升对话回复生成的原创 2025-06-26 11:41:16 · 10 阅读 · 0 评论 -
43、蒙古语成分句法分析与微博情感分析模型研究
本研究围绕蒙古语成分句法分析与微博情感分析展开,首先在蒙古语成分句法分析中,通过引入基于形态知识的分析器,验证了不同组合函数、词表示层次以及词性标注方法对分析性能的影响,结果表明Bi-LSTM组合函数、词素级表示和最后词缀标注显著提升了分析准确性。其次,在微博情感分析方面,提出了一种基于BERT的分层序列情感分类模型,结合Bi-LSTM和CRF结构,有效解决了特征稀疏、上下文依赖和长期记忆需求等技术障碍。实验结果表明,该模型在公开数据集上的各项评估指标均显著优于现有方法。未来研究将聚焦模型优化、多模态融合、原创 2025-06-25 15:22:25 · 13 阅读 · 0 评论 -
42、形态知识引导的蒙古语成分句法分析
本文介绍了一种基于自注意力神经网络和形态知识的蒙古语成分句法分析方法。通过形态分析将后缀分割为新标记,并优化输入嵌入层,同时使用最后后缀标签代替词性标签,显著提升了分析性能。实验结果表明,该模型在开发集和测试集上均显著优于基线系统,为蒙古语成分句法分析提供了有效的解决方案。原创 2025-06-24 11:59:40 · 12 阅读 · 0 评论 -
41、基于视觉和文本相似性的零样本迁移学习
本文介绍了零样本迁移学习(Zero-Shot Transfer Learning,ZSTL)在图像检索领域的应用,探讨了通过将视觉特征转换为语义特征,以改善小样本、低频词和未标注词的图像检索效果。文章详细阐述了ZSTL的基本原理、转移模型的构建、特征转换与微调方法,并通过实验验证了模型的有效性。结果显示,ZSTL在零样本条件下能够将分类器迁移到新的语义空间,并通过余弦距离对标签进行排序,从而提升图像检索的准确性和适用性。原创 2025-06-23 13:18:27 · 16 阅读 · 0 评论 -
40、基于常识的残差连接多步推理与零样本迁移学习
本文介绍了基于常识的残差连接多步推理模型和零样本迁移学习方法。基于常识的残差连接多步推理模型通过引入句子级知识交互模块(SKI模块)和残差连接多步推理模块(RCMR模块),在多选择阅读理解任务中显著提高了对需要常识推理问题的准确率。零样本迁移学习方法(ZSTL)则利用视觉和文本空间之间的相似性,为图像搜索在新出现或低频关键词查询方面提供了有效解决方案。两种方法分别在自然语言处理和图像搜索领域展现了重要的研究价值和应用前景。原创 2025-06-22 16:37:39 · 12 阅读 · 0 评论 -
39、基于常识知识的残差连接多步推理用于多项选择机器阅读理解
本文提出了一种基于常识知识的残差连接多步推理方法,用于解决多项选择机器阅读理解(MRC)中的推理难题。通过引入句子级知识交互(SKI)模块和基于残差连接的多步推理(RCMR)答案模块,模型在处理依赖外部常识知识的‘常识’类型问题时表现出更强的推理能力。实验结果表明,该方法在MCScript数据集上取得了优于现有模型的性能,为多项选择MRC任务提供了新的解决方案。原创 2025-06-21 15:10:00 · 12 阅读 · 0 评论 -
38、段落级分层神经机器翻译:创新模型提升翻译性能
本文介绍了一种创新的段落级分层神经机器翻译(NMT)模型,旨在解决段落平行语料库中句子数量和顺序不一致的问题。研究首次引入了基于文学作品的段落级语料库,并提出了一个分层编码解码结构,以词级和句子级抽象表示获取上下文信息。实验结果表明,该模型在翻译性能上显著优于多个基线模型,尤其在处理长段落和复杂语义时表现出色。此外,文章还探讨了模型在文学翻译、商务文档翻译和学术论文翻译等领域的应用潜力以及未来研究方向。原创 2025-06-20 11:34:47 · 12 阅读 · 0 评论 -
36、多选项阅读理解的选项注意力胶囊网络与暗网恶意网站识别
本文介绍了一种基于选项注意力胶囊网络的多选项阅读理解模型,以及一个用于识别暗网恶意网站的系统。多选项阅读理解模型通过引入胶囊聚合层和选项注意力路由策略,在RACE数据集上表现优于现有单模型,尤其在处理复杂问题时效果显著。暗网恶意网站识别系统通过自动爬取和分析暗网URL,结合文档嵌入与梯度提升决策树模型,实现了高准确率的危险类别预测。研究分别在自然语言处理和网络安全领域提供了有效的解决方案,并展望了未来在模型改进与系统扩展方面的潜力。原创 2025-06-18 12:40:52 · 10 阅读 · 0 评论 -
35、基于快速卷积自注意力的语音去混响方法与选项注意力胶囊网络在多选项阅读理解中的应用
本博客介绍了两项研究工作:一是基于快速卷积自注意力机制的语音去混响方法,通过提出的DCANN和改进的P-DCANN模型,在模拟和真实数据上均取得了显著的语音识别性能提升,并具有更快的训练速度;二是针对多选项阅读理解任务提出的选项注意力胶囊网络模型,通过胶囊聚合层和基于选项注意力的路由策略,有效解决了传统池化操作的信息丢失问题,在RACE数据集上实现了先进的性能表现。这两项研究分别在语音信号处理和自然语言处理领域提供了创新性的解决方案。原创 2025-06-17 09:45:43 · 8 阅读 · 0 评论 -
34、语言模型与语音去混响技术的研究进展
本博文主要探讨了语言模型和语音去混响技术的研究进展。在语言模型领域,动态循环语言模型(DRLM)被提出,以处理语言的时间漂移问题,并通过实验展示了其在捕捉语言进化动态方面的优势。在语音去混响技术方面,提出了基于深度卷积和自注意力机制的DCANN模型及其改进版本P-DCANN,后者结合了基于音素的瓶颈特征(P-BNF)作为教师信号,显著提升了语音识别的准确性和鲁棒性。实验在REVERB挑战语料库上进行,结果表明P-DCANN方法在降低单词错误率方面优于传统方法,同时具备较高的计算效率。未来的研究方向包括模型优原创 2025-06-16 09:44:59 · 9 阅读 · 0 评论 -
33、动态神经语言模型:捕捉语言随时间的演变
本文介绍了一种基于循环神经网络(RNN)的动态语言模型(DRLM),旨在捕捉语言随时间的演变。该模型通过引入全局潜在变量和转移函数,能够适应语言的动态变化,并在多个语料库(如Semantic Scholar、New York Times和Reddit)的语言建模和文本分类任务中表现出色。模型结合了LSTM的长期依赖捕捉能力和动态组件的时变调节能力,为语言建模提供了一种高效且具有广泛应用前景的方法。原创 2025-06-15 13:00:59 · 8 阅读 · 0 评论 -
32、关键词生成与动态神经语言模型:创新技术解析
本文介绍了两种创新的自然语言处理模型:WordRNN 关键词生成模型和基于状态的动态神经语言模型。WordRNN 利用单词注意力机制和上下文融合方法,在多个数据集上展示了优于现有基线模型的性能;动态神经语言模型通过引入时间结构化的全局潜在变量,有效捕捉语言随时间演变的特点,并在语言建模和分类任务中表现出色。这些方法为关键词生成和语言建模提供了新的思路,具有广泛的应用前景。原创 2025-06-14 11:18:12 · 12 阅读 · 0 评论 -
31、文本处理模型的前沿探索:从方面级情感分析到关键词生成
本文介绍了自然语言处理领域的两个重要研究方向:方面级情感分析和关键词生成。在方面级情感分析中,基于注意力机制的TBAM模型通过引入位置编码和注意力交互机制,在多个数据集上展现了优越的性能。对于关键词生成任务,WordRNN模型通过捕捉源文本的隐藏层状态和单词级信息,在多个基准测试中取得了新的最优性能。文章还探讨了模型的应用场景和未来研究方向,包括融合更多知识信息和探索新的模型架构。原创 2025-06-13 11:43:52 · 12 阅读 · 0 评论 -
30、基于目标的注意力模型在方面级情感分析中的应用
本文提出了一种基于目标的注意力模型(TBAM),用于解决方面级情感分析任务。TBAM通过结合上下文与方面的交互信息、位置信息编码以及词级别注意力机制,在多个公共数据集(如SemEval 2014和Twitter)上取得了最先进的性能。模型在多维度信息利用和语义信息捕捉方面具有显著优势,适用于电商平台、社交媒体和客户服务等实际应用场景。未来,TBAM有望在模型优化、跨领域应用和可解释性研究等方面进一步发展。原创 2025-06-12 14:23:01 · 9 阅读 · 0 评论