
图像分割
Rocky Ding*
全网同名Rocky Ding,AIGCmagic社区创始人,自媒体WeThinkIn主理人,AIGC算法专家,持续分享AI行业前沿资讯、干货经验以及深度思考,欢迎社招/校招/实习面试咨询。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
深度学习_图像分割_Dice系数
Dice系数在图像分割和目标检测中比较常用。它的取值范围是0-1之间,越接近1说明模型效果越好。Dice系数是像素级别的,真实的目标出现在某片区域A,我们的模型预测的目标区域为B,那么Dice系数公式如下所示:...原创 2020-08-20 10:00:30 · 5022 阅读 · 0 评论 -
深度学习_图像分割_PANet论文详解
PANet论链接PANet介绍这篇文章提出的Path Aggregation Network (PANet)整体上可以看做是在Mask RCNN上做多处改进,充分利用了特征融合:引入bottom-up path augmentation结构,充分利用网络浅特征进行分割。引入adaptive feature pooling使得提取到的ROI特征更加丰富。引入fully-connected fusion,通过融合一个前背景二分类支路的输出得到精确的分割结果。上图是关于PANet的示意图,主要包转载 2020-08-04 15:03:05 · 2767 阅读 · 0 评论 -
深度学习_图像分割_图像数据可视化分析全流程(EDA)(以钢铁缺陷图像为例)
一.导入相应的Modules下面的代码只是举个例子:import numpy as np # linear algebraimport pandas as pdpd.set_option("display.max_rows", 101)import osprint(os.listdir("../input"))import cv2import jsonimport matplot...原创 2019-12-03 16:01:27 · 2177 阅读 · 3 评论 -
深度学习_图像分割_FCN
一.图像分割算法分类与介绍图像分割是预测图像中每一个像素所属的类别或者物体。基于深度学习的图像分割算法主要分为两类:语意分割:为图像中的每一个像素分配一个类别,如把画面中的所有物体都指出它们各自的类别。实例分割:与语意分割不同,实例分割只对特定物体进行类别分配,这一点与目标检测有点相似,但目标检测输出的是边界框和类别,而实例分割输出的是掩膜(mask)和类别。基于传统的CNN的分割方法...原创 2019-11-22 22:16:24 · 2937 阅读 · 0 评论 -
深度学习_图像分割_U-Net详解(全网最详细)
U-Net模型详解(全网最详细)原创 2019-11-27 10:33:06 · 1447 阅读 · 0 评论