P10505 Dropping Test
题目描述
在某个课程中,你需要进行 nnn 次测试。
如果你在共计 bib_ibi 道题的测试 iii 上的答对题目数量为 aia_iai,你的累积平均成绩就被定义为
100×∑i=1nai∑i=1nbi100\times \dfrac{\displaystyle \sum_{i=1}^n a_i}{\displaystyle \sum_{i=1}^n b_i}100×i=1∑nbii=1∑nai
给定您的考试成绩和一个正整数 kkk,如果您被允许放弃任何 kkk 门考试成绩,您的累积平均成绩的可能最大值是多少。
假设您进行了 333 次测试,成绩分别为 5/5,0/15/5,0/15/5,0/1 和 2/62/62/6。
在不放弃任何测试成绩的情况下,您的累积平均成绩是
100×5+0+25+1+6≈58.33≈58100\times \frac{5+0+2}{5+1+6} \approx 58.33 \approx 58100×5+1+65+0+2≈58.33≈58
然而,如果你放弃第三门成绩,则您的累积平均成绩就变成了
100×5+05+1≈83.33≈83100\times \frac{5+0}{5+1}\approx 83.33\approx 83100×5+15+0≈83.33≈83
输入格式
输入包含多组测试用例,每个测试用例包含三行。
对于每组测试用例,第一行包含两个整数 nnn 和 kkk。
第二行包含 nnn 个整数,表示所有的 aia_iai。
第三行包含 nnn 个整数,表示所有的 bib_ibi。
当输入用例 n=k=0n=k=0n=k=0 时,表示输入终止,且该用例无需处理。
输出格式
对于每个测试用例,输出一行结果,表示在放弃 kkk 门成绩的情况下,可能的累积平均成绩最大值。
结果应四舍五入到最接近的整数。
输入输出样例 #1
输入 #1
3 1
5 0 2
5 1 6
4 2
1 2 7 9
5 6 7 9
0 0
输出 #1
83
100
说明/提示
数据范围 1≤n≤10001 \le n \le 10001≤n≤1000, 0≤k<n0 \le k < n0≤k<n, 0≤ai≤bi≤1090 \le a_i \le b_i \le 10^90≤ai≤bi≤109。
C++实现
#include<bits/stdc++.h>
using namespace std;
const int N=1e5+5;
const double eps=1e-9;
int n,k;
double a[N],b[N],c[N];
bool cmp(double x,double y){
return x>y;
}
bool check(double mid){
for(int i=1;i<=n;i++)
c[i]=a[i]-b[i]*mid;//求c[i]
sort(c+1,c+n+1,cmp);//找答案
double s=0;
for(int i=1;i<=n-k;i++)
s+=c[i];
return s>=0;
}
int main(){
while(cin>>n>>k&&n){
for(int i=1;i<=n;i++)
cin>>a[i];
for(int i=1;i<=n;i++)
cin>>b[i];
double l=0,r=1e9;//实数域二分
while(r-l>eps){
double mid=(l+r)/2.0;
if(check(mid))//此mid可行
l=mid;//更新l
else//否则
r=mid;//更新r
}
printf("%d\n",int(l*100+0.5));
}
return 0;
}
后续
接下来我会不断用C++来实现信奥比赛中的算法题、GESP考级编程题实现、白名单赛事考题实现,记录日常的编程生活、比赛心得,感兴趣的请关注,我后续将继续分享相关内容